Findings

Zeroed Out

Kevin Lewis

February 10, 2021

Carbon‐Neutral Pathways for the United States
James Williams et al.
AGU Advances, January 2021

Abstract:

The Intergovernmental Panel on Climate Change (IPCC) Special Report on Global Warming of 1.5°C points to the need for carbon neutrality by mid‐century. Achieving this in the United States in only 30 years will be challenging, and practical pathways detailing the technologies, infrastructure, costs, and tradeoffs involved are needed. Modeling the entire U.S. energy and industrial system with new analysis tools that capture synergies not represented in sector‐specific or integrated assessment models, we created multiple pathways to net zero and net negative CO2 emissions by 2050. They met all forecast U.S. energy needs at a net cost of 0.2–1.2% of GDP in 2050, using only commercial or near‐commercial technologies, and requiring no early retirement of existing infrastructure. Pathways with constraints on consumer behavior, land use, biomass use, and technology choices (e.g., no nuclear) met the target but at higher cost. All pathways employed four basic strategies: energy efficiency, decarbonized electricity, electrification, and carbon capture. Least‐cost pathways were based on >80% wind and solar electricity plus thermal generation for reliability. A 100% renewable primary energy system was feasible but had higher cost and land use. We found multiple feasible options for supplying low‐carbon fuels for non‐electrifiable end uses in industry, freight, and aviation, which were not required in bulk until after 2035. In the next decade, the actions required in all pathways were similar: expand renewable capacity 3.5 fold, retire coal, maintain existing gas generating capacity, and increase electric vehicle and heat pump sales to >50% of market share. This study provides a playbook for carbon neutrality policy with concrete near‐term priorities.


Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2
Robert Beyer, Andrea Manica & Camilo Mora
Science of The Total Environment, forthcoming

Abstract:

Bats are the likely zoonotic origin of several coronaviruses (CoVs) that infect humans, including SARS-CoV-1 and SARS-CoV-2, both of which have caused large-scale epidemics. The number of CoVs present in an area is strongly correlated with local bat species richness, which in turn is affected by climatic conditions that drive the geographical distributions of species. Here we show that the southern Chinese Yunnan province and neighbouring regions in Myanmar and Laos form a global hotspot of climate change-driven increase in bat richness. This region coincides with the likely spatial origin of bat-borne ancestors of SARS-CoV-1 and SARS-CoV-2. Accounting for an estimated increase in the order of 100 bat-borne CoVs across the region, climate change may have played a key role in the evolution or transmission of the two SARS CoVs.


Solar Geoengineering, Learning, and Experimentation
David Kelly et al.
NBER Working Paper, February 2021

Abstract:

Solar geoengineering (SGE) can combat climate change by directly reducing temperatures. Both SGE and the climate itself are surrounded by great uncertainties. Implementing SGE affects learning about these uncertainties. We model endogenous learning over two uncertainties: the sensitivity of temperatures to carbon concentrations (the climate sensitivity), and the effectiveness of SGE in lowering temperatures. We present both theoretical and simulation results from an integrated assessment model, focusing on the informational value of SGE experimentation. Surprisingly, under current calibrated conditions, SGE deployment slows learning, causing a less informed decision. For any reasonably sized experimental SGE deployment, the temperature change becomes closer to zero, and thus more obscured by noisy weather shocks. Still, some SGE use is optimal despite, not because of, its informational value. The optimal amount of SGE is very sensitive to beliefs about both uncertainties.


Impacts of climate change on the state of Indiana: Ensemble future projections based on statistical downscaling
Alan Hamlet et al.
Climatic Change, December 2020, Pages 1881–1895

Abstract:

Using an ensemble of 10 statistically downscaled global climate model (GCM) simulations, we project future climate change impacts on the state of Indiana (IN) for two scenarios of greenhouse gas concentrations (a medium scenario — RCP4.5 and a high scenario — RCP 8.5) for three future time periods (2020s, 2050s, 2080s). Relative to a 1971–2000 baseline, the projections show substantial changes in temperature (T) for IN, with a change in the annual ensemble mean T for the 2080s RCP8.5 scenario of about 5.6 °C (10.1 °F). Such changes also indicate major changes in T extremes. For southern IN, the number of days with daily maximum T above 35 °C (95 °F) is projected to be about 100 days per year for the 2080s RCP8.5 scenario, as opposed to an average of 5 days for the historical baseline climate. Locations in northern IN could experience 50 days per year above 35 °C (95 °F) for the same conditions. Energy demand for cooling, as measured by cooling degree days (CDD), is projected to increase nearly fourfold in response to this extreme warming, but heating demand as measured by heating degree days (HDD) is projected to decline by 30%, which would result in a net reduction in annual heating/cooling energy demand for consumers. The length of the growing season is projected to increase by about 30 to 50 days by the 2080s for the RCP8.5 scenario, and USDA hardiness zones are projected to shift by about one full zone throughout IN. By the 2080s, all GCM simulations for the RCP8.5 scenario show higher annual precipitation (P) over the Midwest and IN. Projected seasonal changes in P include a 25–30% increase in winter and spring by the 2080s for the RCP8.5 scenarios and a 1–7% decline in summer and fall P (although there is a low model agreement in the latter two seasons). Rising T is projected to cause systematic decreases in the snow-to-rain ratio from Nov-Mar. Snow is projected to become uncommon in southern IN by the 2080s for the RCP8.5 scenario, and snowfall is substantially reduced in other areas of the state. The combined effects of these changes in T, P, and snowfall will likely result in increased surface runoff and flooding during winter and spring.


Climate bones of contention: How climate variability influences territorial, maritime, and river interstate conflicts
Cody Schmidt, Bomi Lee & Sara McLaughlin Mitchell
Journal of Peace Research, January 2021, Pages 132-150

Abstract:

Many scholars examine the relationship between climate variability and intrastate conflict onset. While empirical findings in this literature are mixed, we know less about how climate changes increase the risks for conflicts between countries. This article studies climate variability using the issue approach to world politics. We examine whether climate variability influences the onset and militarization of interstate diplomatic conflicts and whether these effects are similar across issues that involve sovereignty claims for land (territory) or water (maritime, river). We focus on two theoretical mechanisms: scarcity (abundance) and uncertainty. We measure these concepts empirically through climate deviation (e.g. droughts/floods, heat waves/cold spells) and climate volatility (greater short-term variance in precipitation/temperature). Analyses of issue claims in the Western Hemisphere and Europe (1901–2001) show that greater deviations and volatility in climate conditions increase risks for new diplomatic conflicts and militarization of ongoing issues and that climate change acts as a trigger for revisionist states.


How close are we to the temperature tipping point of the terrestrial biosphere?
Katharyn Duffy et al.
Science Advances, January 2021

Abstract:

The temperature dependence of global photosynthesis and respiration determine land carbon sink strength. While the land sink currently mitigates ~30% of anthropogenic carbon emissions, it is unclear whether this ecosystem service will persist and, more specifically, what hard temperature limits, if any, regulate carbon uptake. Here, we use the largest continuous carbon flux monitoring network to construct the first observationally derived temperature response curves for global land carbon uptake. We show that the mean temperature of the warmest quarter (3-month period) passed the thermal maximum for photosynthesis during the past decade. At higher temperatures, respiration rates continue to rise in contrast to sharply declining rates of photosynthesis. Under business-as-usual emissions, this divergence elicits a near halving of the land sink strength by as early as 2040.


The transient sensitivity of sea level rise
Aslak Grinsted & Jens Hesselbjerg Christensen
Ocean Science, January 2021, Pages 181–186

Abstract:

Recent assessments from the Intergovernmental Panel on Climate Change (IPCC) imply that global mean sea level is unlikely to rise more than about 1.1 m within this century but will increase further beyond 2100. Even within the most intensive future anthropogenic greenhouse gas emission scenarios, higher levels are assessed to be unlikely. However, some studies conclude that considerably greater sea level rise could be realized, and a number of experts assign a substantially higher likelihood of such a future. To understand this discrepancy, it would be useful to have scenario-independent metrics that can be compared between different approaches. The concept of a transient climate sensitivity has proven to be useful to compare the global mean temperature response of climate models to specific radiative forcing scenarios. Here, we introduce a similar metric for sea level response. By analyzing the mean rate of change in sea level (not sea level itself), we identify a nearly linear relationship with global mean surface temperature (and therefore accumulated carbon dioxide emissions) both in model projections and in observations on a century scale. This motivates us to define the “transient sea level sensitivity” as the increase in the sea level rate associated with a given warming in units of meters per century per kelvin. We find that future projections estimated on climate model responses fall below extrapolation based on recent observational records. This comparison suggests that the likely upper level of sea level projections in recent IPCC reports would be too low.


Recent migration of tropical cyclones toward coasts
Shuai Wang & Ralf Toumi
Science, 29 January 2021, Pages 514-517

Abstract:

Poleward migrations of tropical cyclones have been observed globally, but their impact on coastal areas remains unclear. We investigated the change in global tropical cyclone activity in coastal regions over the period 1982–2018. We found that the distance of tropical cyclone maximum intensity to land has decreased by about 30 kilometers per decade, and that the annual frequency of global tropical cyclones increases with proximity to land by about two additional cyclones per decade. Trend analysis reveals a robust migration of tropical cyclone activity toward coasts, concurrent with poleward migration of cyclone locations as well as a statistically significant westward shift. This zonal shift of tropical cyclone tracks may be mainly driven by global zonal changes in environmental steering flow.


Low Energy: Estimating Electric Vehicle Electricity Use
Fiona Burlig et al.
NBER Working Paper, February 2021

Abstract:

We provide the first at-scale estimate of electric vehicle (EV) home charging. Previous estimates are either based on surveys that reach conflicting conclusions, or are extrapolated from a small, unrepresentative sample of households with dedicated EV meters. We combine billions of hourly electricity meter measurements with address-level EV registration records from California households. The average EV increases overall household load by 2.9 kilowatt-hours per day, less than half the amount assumed by state regulators. Our results imply that EVs travel 5,300 miles per year, under half of the US fleet average. This raises questions about transportation electrification for climate policy.


Contribution of historical precipitation change to US flood damages
Frances Davenport, Marshall Burke & Noah Diffenbaugh
Proceedings of the National Academy of Sciences, January 2021

Abstract:

Precipitation extremes have increased across many regions of the United States, with further increases anticipated in response to additional global warming. Quantifying the impact of these precipitation changes on flood damages is necessary to estimate the costs of climate change. However, there is little empirical evidence linking changes in precipitation to the historically observed increase in flood losses. We use >6,600 reports of state-level flood damage to quantify the historical relationship between precipitation and flood damages in the United States. Our results show a significant, positive effect of both monthly and 5-d state-level precipitation on state-level flood damages. In addition, we find that historical precipitation changes have contributed approximately one-third of cumulative flood damages over 1988 to 2017 (primary estimate 36%; 95% CI 20 to 46%), with the cumulative impact of precipitation change totaling $73 billion (95% CI 39 to $91 billion). Further, climate models show that anthropogenic climate forcing has increased the probability of exceeding precipitation thresholds at the extremely wet quantiles that are responsible for most flood damages. Climate models project continued intensification of wet conditions over the next three decades, although a trajectory consistent with UN Paris Agreement goals significantly curbs that intensification. Taken together, our results quantify the contribution of precipitation trends to recent increases in flood damages, advance estimates of the costs associated with historical greenhouse gas emissions, and provide further evidence that lower levels of future warming are very likely to reduce financial losses relative to the current global warming trajectory.


The long-term human toll of natural disasters: A study of fetal exposure to the 1974 Tornado super outbreak
Sok Chul Hong, Dongyoung Kim & Eutteum Lee
Applied Economics, December 2020, Pages 469-481

Abstract:

This study investigates the long-term effect of fetal exposure to the 1974 Tornado Super Outbreak. Using the 2008–2017 American Community Survey and a difference-in-differences framework, we estimate the adverse effects of this stressful in-utero shock on health and socioeconomic outcomes in adulthood. The effects explain 7% of the average probability of having at least one physical/cognitive difficulty and are robust to selection and migration issues. We find weaker effects on adulthood socioeconomic status and birth outcomes. The weaker effects on adulthood socioeconomic outcomes are because of complementing parental behaviours. We suggest maternal stress and fear as a key mechanism. Our estimate implies that the annual earned income loss from disaster-driven health problems was $72 million in 2017. Our findings suggest that the adverse impacts on late outcomes might be largely caused by maternal stress due to the unpredictability of the Tornado Super Outbreak.


Insight

from the

Archives

A weekly newsletter with free essays from past issues of National Affairs and The Public Interest that shed light on the week's pressing issues.

advertisement

Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.