Primitive
War, space, and the evolution of Old World complex societies
Peter Turchin et al.
Proceedings of the National Academy of Sciences, 8 October 2013, Pages 16384-16389
Abstract:
How did human societies evolve from small groups, integrated by face-to-face cooperation, to huge anonymous societies of today, typically organized as states? Why is there so much variation in the ability of different human populations to construct viable states? Existing theories are usually formulated as verbal models and, as a result, do not yield sharply defined, quantitative predictions that could be unambiguously tested with data. Here we develop a cultural evolutionary model that predicts where and when the largest-scale complex societies arose in human history. The central premise of the model, which we test, is that costly institutions that enabled large human groups to function without splitting up evolved as a result of intense competition between societies - primarily warfare. Warfare intensity, in turn, depended on the spread of historically attested military technologies (e.g., chariots and cavalry) and on geographic factors (e.g., rugged landscape). The model was simulated within a realistic landscape of the Afroeurasian landmass and its predictions were tested against a large dataset documenting the spatiotemporal distribution of historical large-scale societies in Afroeurasia between 1,500 BCE and 1,500 CE. The model-predicted pattern of spread of large-scale societies was very similar to the observed one. Overall, the model explained 65% of variance in the data. An alternative model, omitting the effect of diffusing military technologies, explained only 16% of variance. Our results support theories that emphasize the role of institutions in state-building and suggest a possible explanation why a long history of statehood is positively correlated with political stability, institutional quality, and income per capita.
----------------------
Eduardo Undurraga et al.
Economics of Education Review, forthcoming
Abstract:
Research in industrial nations suggests that formal math skills are associated with improvements in market and non-market outcomes. But do these associations also hold in a highly autarkic setting with a limited formal labor market? We examined this question using observational annual panel data (2008 and 2009) from 1,121 adults in a native Amazonian society of forager-farmers in Bolivia (Tsimane’). Formal math skills were associated with an increase in wealth in durable market goods and in total wealth between data collection rounds, and with improved indicators of own reported perceived stress and child health. These associations did not vary significantly by people's Spanish skills or proximity to town. We conclude that the positive association between math skills and market and non-market outcomes extends beyond industrial nations to even highly autarkic settings.
----------------------
Sequencing Y Chromosomes Resolves Discrepancy in Time to Common Ancestor of Males Versus Females
David Poznik et al.
Science, 2 August 2013, Pages 562-565
Abstract:
The Y chromosome and the mitochondrial genome have been used to estimate when the common patrilineal and matrilineal ancestors of humans lived. We sequenced the genomes of 69 males from nine populations, including two in which we find basal branches of the Y-chromosome tree. We identify ancient phylogenetic structure within African haplogroups and resolve a long-standing ambiguity deep within the tree. Applying equivalent methodologies to the Y chromosome and the mitochondrial genome, we estimate the time to the most recent common ancestor (TMRCA) of the Y chromosome to be 120 to 156 thousand years and the mitochondrial genome TMRCA to be 99 to 148 thousand years. Our findings suggest that, contrary to previous claims, male lineages do not coalesce significantly more recently than female lineages.
----------------------
Sexual Dimorphism in European Upper Paleolithic Cave Art
Dean Snow
American Antiquity, October 2013, Pages 746-761
Abstract:
Preliminary research on hand stencils found in the Upper Paleolithic cave sites of France and Spain showed that sexual dimorphism in human hands is expressed strongly enough to allow empirical determination of the sexes of the individuals who made some of them. Further research increased the sample of measurable cases from 6 to 32, a large enough sample to show that persons who made hand stencils in the caves were predominantly females. This finding rebuts the traditional assumption that human hand stencils in European parietal art were made by male artists, either adults or subadults. Findings further suggest that the sexual dimorphism of hands was more pronounced during the Upper Paleolithic than it is in modern Europeans. Attempts to apply the same algorithms to a sample of North American Indian handprints confirms the view that different populations require separate analyses.
----------------------
Mark Collard et al.
Philosophical Transactions of the Royal Society: Biological Sciences, 19 November 2013
Abstract:
Identifying factors that influence technological evolution in small-scale societies is important for understanding human evolution. There have been a number of attempts to identify factors that influence the evolution of food-getting technology, but little work has examined the factors that affect the evolution of other technologies. Here, we focus on variation in technological richness (total number of material items and techniques) among recent hunter-gatherers from western North America and test three hypotheses: (i) technological richness is affected by environmental risk, (ii) population size is the primary determinant of technological richness, and (iii) technological richness is constrained by residential mobility. We found technological richness to be correlated with a proxy for environmental risk - mean rainfall for the driest month - in the manner predicted by the risk hypothesis. Support for the hypothesis persisted when we controlled for shared history and intergroup contact. We found no evidence that technological richness is affected by population size or residential mobility. These results have important implications for unravelling the complexities of technological evolution.
----------------------
Environmental Roots of the Late Bronze Age Crisis
David Kaniewski et al.
PLoS ONE, August 2013
Abstract:
The Late Bronze Age world of the Eastern Mediterranean, a rich linkage of Aegean, Egyptian, Syro-Palestinian, and Hittite civilizations, collapsed famously 3200 years ago and has remained one of the mysteries of the ancient world since the event’s retrieval began in the late 19th century AD/CE. Iconic Egyptian bas-reliefs and graphic hieroglyphic and cuneiform texts portray the proximate cause of the collapse as the invasions of the “Peoples-of-the-Sea” at the Nile Delta, the Turkish coast, and down into the heartlands of Syria and Palestine where armies clashed, famine-ravaged cities abandoned, and countrysides depopulated. Here we report palaeoclimate data from Cyprus for the Late Bronze Age crisis, alongside a radiocarbon-based chronology integrating both archaeological and palaeoclimate proxies, which reveal the effects of abrupt climate change-driven famine and causal linkage with the Sea People invasions in Cyprus and Syria. The statistical analysis of proximate and ultimate features of the sequential collapse reveals the relationships of climate-driven famine, sea-borne-invasion, region-wide warfare, and politico-economic collapse, in whose wake new societies and new ideologies were created.
----------------------
5,000 years old Egyptian iron beads made from hammered meteoritic iron
Thilo Rehren et al.
Journal of Archaeological Science, forthcoming
Abstract:
The earliest known iron artefacts are nine small beads securely dated to circa 3200 BC, from two burials in Gerzeh, northern Egypt. We show that these beads were made from meteoritic iron, and shaped by careful hammering the metal into thin sheets before rolling them into tubes. The study demonstrates the ability of neutron and X-ray methods to determine the nature of the material even after complete corrosion of the iron metal. The iron beads were strung into a necklace together with other exotic minerals such as lapis lazuli, gold and carnelian, revealing the status of meteoritic iron as a special material on a par with precious metal and gem stones. The results confirm that already in the fourth millennium BC metalworkers had mastered the smithing of meteoritic iron, an iron-nickel alloy much harder and more brittle than the more commonly worked copper. This is of wider significance as it demonstrates that metalworkers had already nearly two millennia of experience to hot-work meteoritic iron when iron smelting was introduced. This knowledge was essential for the development of iron smelting, which produced metal in a solid state process and hence depended on this ability in order to replace copper and bronze as the main utilitarian metals.
----------------------
Neandertals made the first specialized bone tools in Europe
Marie Soressi et al.
Proceedings of the National Academy of Sciences, 27 August 2013, Pages 14186-14190
Abstract:
Modern humans replaced Neandertals ∼40,000 y ago. Close to the time of replacement, Neandertals show behaviors similar to those of the modern humans arriving into Europe, including the use of specialized bone tools, body ornaments, and small blades. It is highly debated whether these modern behaviors developed before or as a result of contact with modern humans. Here we report the identification of a type of specialized bone tool, lissoir, previously only associated with modern humans. The microwear preserved on one of these lissoir is consistent with the use of lissoir in modern times to obtain supple, lustrous, and more impermeable hides. These tools are from a Neandertal context preceding the replacement period and are the oldest specialized bone tools in Europe. As such, they are either a demonstration of independent invention by Neandertals or an indication that modern humans started influencing European Neandertals much earlier than previously believed. Because these finds clearly predate the oldest known age for the use of similar objects in Europe by anatomically modern humans, they could also be evidence for cultural diffusion from Neandertals to modern humans.
----------------------
Tom Coulthard et al.
PLoS ONE, September 2013
Abstract:
Human migration north through Africa is contentious. This paper uses a novel palaeohydrological and hydraulic modelling approach to test the hypothesis that under wetter climates c.100,000 years ago major river systems ran north across the Sahara to the Mediterranean, creating viable migration routes. We confirm that three of these now buried palaeo river systems could have been active at the key time of human migration across the Sahara. Unexpectedly, it is the most western of these three rivers, the Irharhar river, that represents the most likely route for human migration. The Irharhar river flows directly south to north, uniquely linking the mountain areas experiencing monsoon climates at these times to temperate Mediterranean environments where food and resources would have been abundant. The findings have major implications for our understanding of how humans migrated north through Africa, for the first time providing a quantitative perspective on the probabilities that these routes were viable for human habitation at these times.
----------------------
Teruo Hashimoto et al.
Philosophical Transactions of the Royal Society: Biological Sciences, 19 November 2013
Abstract:
People have long speculated whether the evolution of bipedalism in early hominins triggered tool use (by freeing their hands) or whether the necessity of making and using tools encouraged the shift to upright gait. Either way, it is commonly thought that one led to the other. In this study, we sought to shed new light on the origins of manual dexterity and bipedalism by mapping the neural representations in the brain of the fingers and toes of living people and monkeys. Contrary to the ‘hand-in-glove’ notion outlined above, our results suggest that adaptations underlying tool use evolved independently of those required for human bipedality. In both humans and monkeys, we found that each finger was represented separately in the primary sensorimotor cortex just as they are physically separated in the hand. This reflects the ability to use each digit independently, as required for the complex manipulation involved in tool use. The neural mapping of the subjects’ toes differed, however. In the monkeys, the somatotopic representation of the toes was fused, showing that the digits function predominantly as a unit in general grasping. Humans, by contrast, had an independent neurological representation of the big toe (hallux), suggesting association with bipedal locomotion. These observations suggest that the brain circuits for the hand had advanced beyond simple grasping, whereas our primate ancestors were still general arboreal quadrupeds. This early adaptation laid the foundation for the evolution of manual dexterity, which was preserved and enhanced in hominins. In hominins, a separate adaptation, involving the neural separation of the big toe, apparently occurred with bipedality. This accords with the known fossil evidence, including the recently reported hominin fossils which have been dated to 4.4 million years ago.
----------------------
Brian Codding & Terry Jones
Proceedings of the National Academy of Sciences, 3 September 2013, Pages 14569-14573
Abstract:
Global patterns of ethnolinguistic diversity vary tremendously. Some regions show very little variation even across vast expanses, whereas others exhibit dense mosaics of different languages spoken alongside one another. Compared with the rest of Native North America, prehistoric California exemplified the latter. Decades of linguistic, genetic, and archaeological research have produced detailed accounts of the migrations that aggregated to build California’s diverse ethnolinguistic mosaic, but there have been few have attempts to explain the process underpinning these migrations and why such a mosaic did not develop elsewhere. Here we show that environmental productivity predicts both the order of migration events and the population density recorded at contact. The earliest colonizers occupied the most suitable habitats along the coast, whereas subsequent Mid-Late Holocene migrants settled in more marginal habitats. Other Late Holocene patterns diverge from this trend, reflecting altered dynamics linked to food storage and increased sedentism. Through repeated migration events, incoming populations replaced resident populations occurring at lower densities in lower-productivity habitats, thereby resulting in the fragmentation of earlier groups and the development of one of the most diverse ethnolinguistic patterns in the Americas. Such a process may account for the distribution of ethnolinguistic diversity worldwide.
----------------------
Noreen von Cramon-Taubadel, Jay Stock & Ron Pinhasi
Proceedings of the Royal Society: Biological Sciences, 22 September 2013
Abstract:
The Neolithic transition in Europe was a complex mosaic spatio-temporal process, involving both demic diffusion from the Near East and the cultural adoption of farming practices by indigenous hunter-gatherers. Previous analyses of Mesolithic hunter-gatherers and Early Neolithic farmers suggest that cranial shape variation preserves the population history signature of the Neolithic transition. However, the extent to which these same demographic processes are discernible in the postcranium is poorly understood. Here, for the first time, crania and postcranial elements from the same 11 prehistoric populations are analysed together in an internally consistent theoretical and methodological framework. Results show that while cranial shape reflects the population history differences between Mesolithic and Neolithic lineages, relative limb dimensions exhibit significant congruence with environmental variables such as latitude and temperature, even after controlling for geography and time. Also, overall limb size is found to be consistently larger in hunter-gatherers than farmers, suggesting a reduction in size related to factors other than thermoregulatory adaptation. Therefore, our results suggest that relative limb dimensions are not tracking the same demographic population history as the cranium, and point to the strong influence of climatic, dietary and behavioural factors in determining limb morphology, irrespective of underlying neutral demographic processes.