The good old days
Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans
Víctor Moreno-Mayar et al.
Nature, forthcoming
Abstract:
Despite broad agreement that the Americas were initially populated via Beringia, the land bridge that connected far northeast Asia with northwestern North America during the Pleistocene epoch, when and how the peopling of the Americas occurred remains unresolved. Analyses of human remains from Late Pleistocene Alaska are important to resolving the timing and dispersal of these populations. The remains of two infants were recovered at Upward Sun River (USR), and have been dated to around 11.5 thousand years ago (ka). Here, by sequencing the USR1 genome to an average coverage of approximately 17 times, we show that USR1 is most closely related to Native Americans, but falls basal to all previously sequenced contemporary and ancient Native Americans. As such, USR1 represents a distinct Ancient Beringian population. Using demographic modelling, we infer that the Ancient Beringian population and ancestors of other Native Americans descended from a single founding population that initially split from East Asians around 36 ± 1.5 ka, with gene flow persisting until around 25 ± 1.1 ka. Gene flow from ancient north Eurasians into all Native Americans took place 25–20 ka, with Ancient Beringians branching off around 22–18.1 ka. Our findings support a long-term genetic structure in ancestral Native Americans, consistent with the Beringian ‘standstill model’. We show that the basal northern and southern Native American branches, to which all other Native Americans belong, diverged around 17.5–14.6 ka, and that this probably occurred south of the North American ice sheets. We also show that after 11.5 ka, some of the northern Native American populations received gene flow from a Siberian population most closely related to Koryaks, but not Palaeo-Eskimos, Inuits or Kets, and that Native American gene flow into Inuits was through northern and not southern Native American groups. Our findings further suggest that the far-northern North American presence of northern Native Americans is from a back migration that replaced or absorbed the initial founding population of Ancient Beringians.
Prehistoric women’s manual labor exceeded that of athletes through the first 5500 years of farming in Central Europe
Alison Macintosh, Ron Pinhasi & Jay Stock
Science Advances, November 2017
Abstract:
The intensification of agriculture is often associated with declining mobility and bone strength through time, although women often exhibit less pronounced trends than men. For example, previous studies of prehistoric Central European agriculturalists (~5300 calibrated years BC to 850 AD) demonstrated a significant reduction in tibial rigidity among men, whereas women were characterized by low tibial rigidity, little temporal change, and high variability. Because of the potential for sex-specific skeletal responses to mechanical loading and a lack of modern comparative data, women’s activity in prehistory remains difficult to interpret. This study compares humeral and tibial cross-sectional rigidity, shape, and interlimb loading among prehistoric Central European women agriculturalists and living European women of known behavior (athletes and controls). Prehistoric female tibial rigidity at all time periods was highly variable, but differed little from living sedentary women on average, and was significantly lower than that of living runners and football players. However, humeral rigidity exceeded that of living athletes for the first ~5500 years of farming, with loading intensity biased heavily toward the upper limb. Interlimb strength proportions among Neolithic, Bronze Age, and Iron Age women were most similar to those of living semi-elite rowers. These results suggest that, in contrast to men, rigorous manual labor was a more important component of prehistoric women’s behavior than was terrestrial mobility through thousands of years of European agriculture, at levels far exceeding those of modern women.
Population is the main driver of war group size and conflict casualties
Rahul Oka et al.
Proceedings of the National Academy of Sciences, 26 December 2017, Pages E11101–E11110
Abstract:
The proportions of individuals involved in intergroup coalitional conflict, measured by war group size (W), conflict casualties (C), and overall group conflict deaths (G), have declined with respect to growing populations, implying that states are less violent than small-scale societies. We argue that these trends are better explained by scaling laws shared by both past and contemporary societies regardless of social organization, where group population (P) directly determines W and indirectly determines C and G. W is shown to be a power law function of P with scaling exponent X [demographic conflict investment (DCI)]. C is shown to be a power law function of W with scaling exponent Y [conflict lethality (CL)]. G is shown to be a power law function of P with scaling exponent Z [group conflict mortality (GCM)]. Results show that, while W/P and G/P decrease as expected with increasing P, C/W increases with growing W. Small-scale societies show higher but more variance in DCI and CL than contemporary states. We find no significant differences in DCI or CL between small-scale societies and contemporary states undergoing drafts or conflict, after accounting for variance and scale. We calculate relative measures of DCI and CL applicable to all societies that can be tracked over time for one or multiple actors. In light of the recent global emergence of populist, nationalist, and sectarian violence, our comparison-focused approach to DCI and CL will enable better models and analysis of the landscapes of violence in the 21st century.
A model for warfare in stratified small-scale societies: The effect of within-group inequality
Sagar Pandit, Gauri Pradhan & Carel van Schaik
PLoS ONE, December 2017
Abstract:
In order to predict the features of non-raiding human warfare in small-scale, socially stratified societies, we study a coalitionary model of war that assumes that individuals participate voluntarily because their decisions serve to maximize fitness. Individual males join the coalition if war results in a net economic and thus fitness benefit. Within the model, viable offensive war ensues if the attacking coalition of males can overpower the defending coalition. We assume that the two groups will eventually fuse after a victory, with ranks arranged according to the fighting abilities of all males and that the new group will adopt the winning group’s skew in fitness payoffs. We ask whether asymmetries in skew, group size and the amount of resources controlled by a group affect the likelihood of successful war. The model shows, other things being equal, that (i) egalitarian groups are more likely to defeat their more despotic enemies, even when these are stronger, (ii) defection to enemy groups will be rare, unless the attacked group is far more despotic than the attacking one, and (iii) genocidal war is likely under a variety of conditions, in particular when the group under attack is more egalitarian. This simple optimality model accords with several empirically observed correlations in human warfare. Its success underlines the important role of egalitarianism in warfare.
Armies in the Early Bronze Age? An alternative interpretation of Únětice Culture axe hoards
Harald Meller
Antiquity, December 2017, Pages 1529-1545
Abstract:
The Early Bronze Age Únětice Culture in central Germany was a highly stratified society with a ruling class of ‘princes’, as evidenced by the famous burials at Leubingen and Helmsdorf, and the newly excavated burial mound Bornhöck near Dieskau. To investigate the notion of Únětice military organisation, this article presents a new interpretation of the numerous weapons hoards recovered from the region. Hoard deposition and composition from central Germany strongly suggests a shift from a Late Neolithic culture of ‘warrior heroes’ to the creation of organised standing armies of professional soldiers under the control of ruling elites.
Digging deeper: Insights into metallurgical transitions in European prehistory through copper isotopes
WaynePowell et al.
Journal of Archaeological Science, December 2017, Pages 37-46
Abstract:
Southeastern Europe is the birthplace of metallurgy, with evidence of copper smelting at ca. 5000 BCE. There the later Eneolithic (Copper Age) was associated with the casting of massive copper tools. However, copper metallurgy in this region ceased, or significantly decreased, centuries before the dawn of the Bronze Age. Archaeologists continue to be debate whether this hiatus was imposed on early metalworking communities as a result of exhaustion of workable mineral resources, or instead a cultural transition that was associated with changes in depositional practices and material culture. Copper isotopes provide a broadly applicable means of addressing this question. Copper isotopes fractionate in the near-surface environment such that surficial oxide ores can be differentiated from non-weathered sulphide ores that occur at greater depth. This compositional variation is transferred to associated copper artifacts, the final product of the metallurgical process. In the central Balkans, a shift from 65Cu-enriched to 65Cu-depleted copper artifacts occurs across the metallurgical hiatus at the Eneolithic-Bronze Age boundary, ca. 2500 BCE. This indicates that the reemergence of metal production at the beginning of the Bronze Age is associated with pyrotechnical advancements that allowed for the extraction of copper from sulphide ore. Thus copper isotopes provide direct evidence that the copper hiatus was the result of exhaustion of near-surface oxide ores after one-and-a-half millennia of mining, and that the beginning of the Bronze Age in the Balkans is associated with the introduction of more complex smelting techniques for metal extraction from regionally abundant sulphidic deposits.