Findings

Parched

Kevin Lewis

August 22, 2012

The Effect of Embodied Temperature on Perceptions of Global Warming

Gary Lewandowski, Natalie Ciarocco & Emily Gately
Current Psychology, September 2012, Pages 318-324

Abstract:
Recent research has established that individuals' perception of global warming is malleable such that individuals report that it is a more serious problem when they experience higher outdoor or indoor temperatures (Li et al. Psychological Science, 22(4), 454-459, 2011; Risen and Critcher Journal of Personality and Social Psychology, 100(5), 777-793, 2011). We extend these findings on the experience of actual temperature by testing whether the embodied experience of temperature, manipulated by participants chewing cinnamon or mint gum, can activate the concept of temperature and influence perception of global warming. As predicted, compared to those who did not chew gum, those experiencing embodied temperature through chewing gum reported greater concern for global warming, but not other social problems, and were more likely to volunteer for a global warming group on campus. This suggests that the physical experience of tasting cinnamon or mint gum activated the larger conceptual system of temperature changes that subsequently influenced beliefs about global warming.

----------------------

Willingness to pay and political support for a US national clean energy standard

Joseph Aldy, Matthew Kotchen & Anthony Leiserowitz
Nature Climate Change, August 2012, Pages 596-599

Abstract:
In 2010 and 2011, Republicans and Democrats proposed mandating clean power generation in the electricity sector. To evaluate public support for a national clean energy standard (NCES), we conducted a nationally representative survey that included randomized treatments on the sources of eligible power generation and programme costs. We find that the average US citizen is willing to pay US$162 per year in higher electricity bills (95% confidence interval: US$128-260), representing a 13% increase, in support of a NCES that requires 80% clean energy by 2035. Support for a NCES is lower among non-whites, older individuals and Republicans. We also employ our statistical model, along with census data for each state and Congressional district, to simulate voting behaviour on a NCES by Members of Congress assuming they vote consistently with the preferences of their median voter. We estimate that Senate passage of a NCES would require an average household cost below US$59 per year, and House passage would require costs below US$48 per year. The results imply that an ‘80% by 2035' NCES could pass both chambers of Congress if it increases electricity rates less than 5% on average.

----------------------

Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards

John Lowe et al.
Proceedings of the National Academy of Sciences, 21 August 2012, Pages 13532-13537

Abstract:
Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters.

----------------------

Promoting pro-environmental action in climate change deniers

Paul Bain et al.
Nature Climate Change, August 2012, Pages 600-603

Abstract:
A sizeable (and growing) proportion of the public in Western democracies deny the existence of anthropogenic climate change. It is commonly assumed that convincing deniers that climate change is real is necessary for them to act pro-environmentally. However, the likelihood of ‘conversion' using scientific evidence is limited because these attitudes increasingly reflect ideological positions. An alternative approach is to identify outcomes of mitigation efforts that deniers find important. People have strong interests in the welfare of their society, so deniers may act in ways supporting mitigation efforts where they believe these efforts will have positive societal effects. In Study 1, climate change deniers (N=155) intended to act more pro-environmentally where they thought climate change action would create a society where people are more considerate and caring, and where there is greater economic/technological development. Study 2 (N=347) replicated this experimentally, showing that framing climate change action as increasing consideration for others, or improving economic/technological development, led to greater pro-environmental action intentions than a frame emphasizing avoiding the risks of climate change. To motivate deniers' pro-environmental actions, communication should focus on how mitigation efforts can promote a better society, rather than focusing on the reality of climate change and averting its risks.

----------------------

Perception of climate change

James Hansen, Makiko Sato & Reto Ruedy
Proceedings of the National Academy of Sciences, forthcoming

Abstract:
"Climate dice," describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3σ) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change.

----------------------

Increasing drought under global warming in observations and models

Aiguo Dai
Nature Climate Change, forthcoming

Abstract:
Historical records of precipitation, streamflow and drought indices all show increased aridity since 1950 over many land areas. Analyses of model-simulated soil moisture, drought indices and precipitation-minus-evaporation suggest increased risk of drought in the twenty-first century. There are, however, large differences in the observed and model-simulated drying patterns. Reconciling these differences is necessary before the model predictions can be trusted. Previous studies show that changes in sea surface temperatures have large influences on land precipitation and the inability of the coupled models to reproduce many observed regional precipitation changes is linked to the lack of the observed, largely natural change patterns in sea surface temperatures in coupled model simulations. Here I show that the models reproduce not only the influence of El Niño-Southern Oscillation on drought over land, but also the observed global mean aridity trend from 1923 to 2010. Regional differences in observed and model-simulated aridity changes result mainly from natural variations in tropical sea surface temperatures that are often not captured by the coupled models. The unforced natural variations vary among model runs owing to different initial conditions and thus are irreproducible. I conclude that the observed global aridity changes up to 2010 are consistent with model predictions, which suggest severe and widespread droughts in the next 30-90 years over many land areas resulting from either decreased precipitation and/or increased evaporation.

----------------------

Shifting public opinion on climate change: An empirical assessment of factors influencing concern over climate change in the U.S., 2002-2010

Robert Brulle, Jason Carmichael & Craig Jenkins
Climatic Change, September 2012, Pages 169-188

Abstract:
This paper conducts an empirical analysis of the factors affecting U.S. public concern about the threat of climate change between January 2002 and December 2010. Utilizing Stimson's method of constructing aggregate opinion measures, data from 74 separate surveys over a 9-year period are used to construct quarterly measures of public concern over global climate change. We examine five factors that should account for changes in levels of concern: 1) extreme weather events, 2) public access to accurate scientific information, 3) media coverage, 4) elite cues, and 5) movement/countermovement advocacy. A time-series analysis indicates that elite cues and structural economic factors have the largest effect on the level of public concern about climate change. While media coverage exerts an important influence, this coverage is itself largely a function of elite cues and economic factors. Weather extremes have no effect on aggregate public opinion. Promulgation of scientific information to the public on climate change has a minimal effect. The implication would seem to be that information-based science advocacy has had only a minor effect on public concern, while political mobilization by elites and advocacy groups is critical in influencing climate change concern.

----------------------

Coral resilience to ocean acidification and global warming through pH up-regulation

Malcolm McCulloch et al.
Nature Climate Change, August 2012, Pages 623-627

Abstract:
Rapidly rising levels of atmospheric CO2 are not only causing ocean warming, but also lowering seawater pH hence the carbonate saturation state of the oceans, on which many marine organisms depend to calcify their skeletons. Using boron isotope systematics, we show how scleractinian corals up-regulate pH at their site of calcification such that internal changes are approximately one-half of those in ambient seawater. This species-dependent pH-buffering capacity enables aragonitic corals to raise the saturation state of their calcifying medium, thereby increasing calcification rates at little additional energy cost. Using a model of pH regulation combined with abiotic calcification, we show that the enhanced kinetics of calcification owing to higher temperatures has the potential to counter the effects of ocean acidification. Up-regulation of pH, however, is not ubiquitous among calcifying organisms; those lacking this ability are likely to undergo severe declines in calcification as CO2 levels increase. The capacity to up-regulate pH is thus central to the resilience of calcifiers to ocean acidification, although the fate of zooxanthellate corals ultimately depends on the ability of both the photosymbionts and coral host to adapt to rapidly increasing ocean temperatures.

----------------------

Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch

Jörg Pross et al.
Nature, 2 August 2012, Pages 73-77

Abstract:
The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene ‘greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.

----------------------

Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models

Gabriele Villarini & Gabriel Vecchi
Nature Climate Change, August 2012, Pages 604-607

Abstract:
Assessing potential changes in North Atlantic (NA) tropical storm (TS) activity this century is of paramount societal and economic significance, and the topic of intense scientific research. We explore projections of NA TS changes over the twenty-first century by applying a statistical downscaling methodology to a suite of experiments with the latest state-of-the-art global coupled climate models. We also apply a methodology to partition the dominant sources of uncertainty in the TS projections. We find that over the first half of the twenty-first century radiative forcing changes act to increase NA TS frequency; this increase arises from radiative forcings other than increasing CO2 (probably aerosols). However, NA TS trends over the entire twenty-first century are of ambiguous sign. We find that for NA TS frequency, in contrast to sea surface temperature (SST), the largest uncertainties are driven by the chaotic nature of the climate system and by the climate response to radiative forcing. These results highlight the need to better understand the processes controlling patterns of SST change in response to radiative forcing and internal climate variability to constrain estimates of future NA TS activity. Coordinated experiments isolating forcing agents in projections should improve our understanding, and would enable better assessment of future TS activity.

----------------------

Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally

Steven Higgins & Simon Scheiter
Nature, 9 August 2012, Pages 209-212

Abstract:
It is possible that anthropogenic climate change will drive the Earth system into a qualitatively different state. Although different types of uncertainty limit our capacity to assess this risk, Earth system scientists are particularly concerned about tipping elements, large-scale components of the Earth system that can be switched into qualitatively different states by small perturbations. Despite growing evidence that tipping elements exist in the climate system, whether large-scale vegetation systems can tip into alternative states is poorly understood. Here we show that tropical grassland, savanna and forest ecosystems, areas large enough to have powerful impacts on the Earth system, are likely to shift to alternative states. Specifically, we show that increasing atmospheric CO2 concentration will force transitions to vegetation states characterized by higher biomass and/or woody-plant dominance. The timing of these critical transitions varies as a result of between-site variance in the rate of temperature increase, as well as a dependence on stochastic variation in fire severity and rainfall. We further show that the locations of bistable vegetation zones (zones where alternative vegetation states can exist) will shift as climate changes. We conclude that even though large-scale directional regime shifts in terrestrial ecosystems are likely, asynchrony in the timing of these shifts may serve to dampen, but not nullify, the shock that these changes may represent to the Earth system.

----------------------

Economics and Climate Change: Integrated Assessment in a Multi-Region World

John Hassler & Per Krusell
Journal of the European Economic Association, forthcoming

Abstract:
This paper develops a model that integrates the climate and the global economy - an integrated assessment model - with which different policy scenarios can be analyzed and compared. The model is a dynamic stochastic general-equilibrium setup with a continuum of regions. Thus, it is a full stochastic general-equilibrium version of RICE, Nordhaus's pioneering multi-region integrated assessment model. Like RICE, our model features traded fossil fuel but otherwise has no markets across regions - there is no insurance nor any intertemporal trade across them. The extreme form of market incompleteness is not fully realistic but arguably not a bad approximation of reality. Its major advantage is that, along with a set of reasonable assumptions on preferences, technology, and nature, it allows a closed-form model solution. We use the model to assess the welfare consequences of carbon taxes that differ across as well as within oil-consuming and -producing regions. We show that, surprisingly, only taxes on oil producers can improve the climate: taxes on oil consumers have no effect at all. The calibrated model suggests large differences in views on climate policy across regions.

----------------------

The SO2 Allowance Trading System: The Ironic History of a Grand Policy Experiment

Richard Schmalensee & Robert Stavins
NBER Working Paper, August 2012

Abstract:
Two decades have passed since the Clean Air Act Amendments of 1990 launched a grand experiment in market-based environmental policy: the SO2 cap-and-trade system. That system performed well but created four striking ironies. First, this system was put in place to curb acid rain, but the main source of benefits from it was unexpected. Second, a substantial source of this system's cost-effectiveness was an unanticipated consequence of earlier railroad deregulation. Third, it is ironic that cap-and-trade has come to be demonized by conservative politicians in recent years, since this market-based, cost-effective policy innovation was initially championed and implemented by Republican administrations. Fourth, court decisions and subsequent regulatory responses have led to the collapse of the SO2 market, demonstrating that what the government gives, the government can take away.

----------------------

Transfer payments in global climate policy

Florian Landis & Thomas Bernauer
Nature Climate Change, August 2012, Pages 628-633

Abstract:
Many scientists and policymakers agree that large financial flows from richer to poorer countries will be necessary to reach an agreement on reducing greenhouse-gas emissions enough to keep global warming below 2 °C. But the required amounts of transfer payments and justifications for them remain contested. We contribute to this debate by developing an argument for transfer payments that derives from the differences between carbon prices that different countries may set in light of two distinct criteria for appropriate levels of emission reductions. If, for reasons of cost efficiency, a globally uniform carbon price was installed, transfer payments would be required to offset these differences. We combine global climate modelling with regional welfare analysis to estimate regional carbon prices under various climate change, emissions and economic scenarios. The estimated ratios between regional carbon prices are surprisingly robust to different modelling assumptions. To the extent that burden-sharing choices in global climate policy are motivated by regional carbon prices, our analysis allows for a quantification of required transfer payments. Assuming a global carbon price of US$35 per t CO2, for example, our estimates would justify transfer payments of the order of US$15-48 billion per year.

----------------------

Robust Simulation of Global Warming Policies Using the DICE Model

Zhaolin Hu, Jing Cao & Jeff Hong
Management Science, forthcoming

Abstract:
Integrated assessment models that combine geophysics and economics features are often used to evaluate and compare global warming policies. Because there are typically profound uncertainties in these models, a simulation approach is often used. This approach requires the distribution of the uncertain parameters clearly specified. However, this is typically impossible because there is often a significant amount of ambiguity (e.g., estimation error) in specifying the distribution. In this paper, we adopt the widely used multivariate normal distribution to model the uncertain parameters. However, we assume that the mean vector and covariance matrix of the distribution are within some ambiguity sets. We then show how to find the worst-case performance of a given policy for all distributions constrained by the ambiguity sets. This worst-case performance provides a robust evaluation of the policy. We test our algorithm on a famous integrated model of climate change, known as the Dynamic Integrated Model of Climate and the Economy (DICE model). We find that the DICE model is sensitive to the means and covariance of the parameters. Furthermore, we find that, based on the DICE model, moderately tight environmental policies robustly outperform the no controls policy and the famous aggressive policies proposed by Stern and Gore.

----------------------

Perceptions of Utah ranchers toward carbon sequestration: Policy implications for US rangelands

Zhao Ma & Layne Coppock
Journal of Environmental Management, 30 November 2012, Pages 78-86

Abstract:
Enhanced carbon sequestration is one means to mitigate climate change. Rangelands are arid and semi-arid lands, typified by relatively low and variable levels of net primary productivity, where carbon sequestration might be increased via alterations in land management. Rangelands are vast in size and dominate the land area in the western US and worldwide. It has been estimated that privately owned rangelands in the US could sequester an additional 60 million tons of carbon annually, roughly equal to five percent of the US annual CO2 emissions. Ranchers are the target population that could implement changes in rangeland management to promote carbon sequestration, but little is known about how they might receive such programs. Therefore, for Utah, we conducted a combined mail and telephone survey of 495 randomly selected ranchers to assess their knowledge of and attitude toward carbon sequestration, possible benefits of carbon sequestration as perceived by ranchers, and factors influencing their likelihood of participating in carbon sequestration programs. Overall, despite that 70 percent of respondents had little or no self-reported knowledge about carbon sequestration, 63 percent had negative views about it. Ranchers reporting the most knowledge also tended to have the most negative attitudes. The least important benefit that might accrue to ranchers from carbon sequestration was seen as climate change mitigation, while the most important benefit was improved land stewardship. Only four percent of respondents indicated an unconditional willingness to participate in carbon sequestration programs, but 71 percent could be interested depending on new information received. Before carbon sequestration programs are developed for rangelands, further research is needed to clarify why more knowledge of carbon sequestration can lead to greater skepticism of relevant programs. We respect this finding, as it may be based on well-founded rancher concerns such as technical or administrative efficacy. If such concerns can be overcome, extension efforts should be tailored to emphasize the ecological merits of carbon sequestration for rangeland management, which will facilitate the ability of ranchers to achieve their personal goals.

----------------------

Relative outcomes of climate change mitigation related to global temperature versus sea-level rise

Gerald Meehl et al.
Nature Climate Change, August 2012, Pages 576-580

Abstract:
There is a common perception that, if human societies make the significant adjustments necessary to substantively cut emissions of greenhouse gases, global temperature increases could be stabilized, and the most dangerous consequences of climate change could be avoided. Here we show results from global coupled climate model simulations with the new representative concentration pathway mitigation scenarios to 2300 to illustrate that, with aggressive mitigation in two of the scenarios, globally averaged temperature increase indeed could be stabilized either below 2 °C or near 3 °C above pre-industrial values. However, even as temperatures stabilize, sea level would continue to rise. With little mitigation, future sea-level rise would be large and continue unabated for centuries. Though sea-level rise cannot be stopped for at least the next several hundred years, with aggressive mitigation it can be slowed down, and this would buy time for adaptation measures to be adopted.

----------------------

Trade and the Greenhouse Gas Emissions from International Freight Transport

Anca Cristea et al.
Journal of Environmental Economics and Management, forthcoming

Abstract:
We collect extensive data on worldwide trade by transportation mode and use this to provide detailed comparisons of the greenhouse gas emissions associated with output versus international transportation of traded goods. International transport is responsible for 33 percent of world-wide trade-related emissions, and over 75 percent of emissions for major manufacturing categories. Including transport dramatically changes the ranking of countries by emissions per dollar of trade. We systematically investigate whether trade inclusive of transport can lower emissions. In one quarter of cases, the difference in output emissions is more than enough to compensate for the emissions cost of transport. Finally, we examine how likely patterns of global trade growth will affect modal use and emissions. Full liberalization of tariffs and GDP growth concentrated in China and India lead to transport emissions growing much faster than the value of trade, due to trade shifting toward distant trading partners.

----------------------

Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years

A.P. Ballantyne et al.
Nature, 2 August 2012, Pages 70-72

Abstract:
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO2 emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO2 measurements, CO2 emission inventories and their full range of uncertainties to calculate changes in global CO2 sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.

----------------------

Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish

Graham Scott & Ian Johnston
Proceedings of the National Academy of Sciences, forthcoming

Abstract:
Global warming is intensifying interest in the mechanisms enabling ectothermic animals to adjust physiological performance and cope with temperature change. Here we show that embryonic temperature can have dramatic and persistent effects on thermal acclimation capacity at multiple levels of biological organization. Zebrafish embryos were incubated until hatching at control temperature (TE = 27 °C) or near the extremes for normal development (TE = 22 °C or 32 °C) and were then raised to adulthood under common conditions at 27 °C. Short-term temperature challenge affected aerobic exercise performance (Ucrit), but each TE group had reduced thermal sensitivity at its respective TE. In contrast, unexpected differences arose after long-term acclimation to 16 °C, when performance in the cold was ∼20% higher in both 32 °C and 22 °C TE groups compared with 27 °C TE controls. Differences in performance after acclimation to cold or warm (34 °C) temperatures were partially explained by variation in fiber type composition in the swimming muscle. Cold acclimation changed the abundance of 3,452 of 19,712 unique and unambiguously identified transcripts detected in the fast muscle using RNA-Seq. Principal components analysis differentiated the general transcriptional responses to cold of the 27 °C and 32 °C TE groups. Differences in expression were observed for individual genes involved in energy metabolism, angiogenesis, cell stress, muscle contraction and remodeling, and apoptosis. Therefore, thermal acclimation capacity is not fixed and can be modified by temperature during early development. Developmental plasticity may thus help some ectothermic organisms cope with the more variable temperatures that are expected under future climate-change scenarios.

----------------------

On the Uncertainty About the Total Economic Impact of Climate Change

Richard Tol
Environmental and Resource Economics, September 2012, Pages 97-116

Abstract:
This paper uses a vote-counting procedure to estimate the probability density function of the total economic impact as a parabolic function of global warming. There is a wide range of uncertainty about the impact of climate change up to 3°C, and the information becomes progressively more diffuse beyond that. Warming greater than 3°C most likely has net negative impacts, and warming greater than 7°C may lead to a total welfare loss. The expected value of the social cost of carbon is about $29/tC in 2015 and rises at roughly 2% per year.

----------------------

Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model

Huanghe Gu et al.
Climatic Change, September 2012, Pages 301-317

Abstract:
This paper assesses future climate changes over East and South Asia using a regional climate model (RegCM4) with a 50 km spatial resolution. To evaluate the model performance, RegCM4 is driven with "perfect boundary forcing" from the reanalysis data during 1970-1999 to simulate the present day climate. The model performs well in reproducing not only the mean climate and seasonality but also most of the chosen indicators of climate extremes. Future climate changes are evaluated based on two experiments driven with boundary forcing from the European-Hamburg general climate model (ECHAM5), one for the present (1970-1999) and one for the SRES A1B future scenario (2070-2099). The model predicts an annual temperature increase of about 3°-5° (smaller over the ocean and larger over the land), and an increase of annual precipitation over most of China north of 30°N and a decrease or little change in the rest of China, India and Indochina. For temperature-related extreme indicators in the future, the model predicts a generally longer growing season, more hot days in summer, and less frost days in winter. For precipitation-related extremes, the number of days with more than 10 mm of rainfall is predicted to increase north of 30°N and decrease in the south, and the maximum five-day rainfall amount and daily intensity will increase across the whole model domain. In addition, the maximum number of consecutive dry days is predicted to increase over most of the model domain, south of 40°N. Most of the Yangtze River Basin in China stands out as "hotspots" of extreme precipitation changes, with the strongest increases of daily rain intensity, maximum five-day rain amount, and the number of consecutive dry days, suggesting increased risks of both floods and droughts.


Insight

from the

Archives

A weekly newsletter with free essays from past issues of National Affairs and The Public Interest that shed light on the week's pressing issues.

advertisement

Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.