Findings

Origin story

Kevin Lewis

November 23, 2013

Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

Maanasa Raghavan et al.
Nature, forthcoming

Abstract:
The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal’ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.

----------------------

Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses

Susanne Shultz & Mark Maslin
PLoS ONE, October 2013

Abstract:
Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

----------------------

Experimental evidence for the influence of group size on cultural complexity

Maxime Derex et al.
Nature, 21 November 2013, Pages 389–391

Abstract:
The remarkable ecological and demographic success of humanity is largely attributed to our capacity for cumulative culture. The accumulation of beneficial cultural innovations across generations is puzzling because transmission events are generally imperfect, although there is large variance in fidelity. Events of perfect cultural transmission and innovations should be more frequent in a large population. As a consequence, a large population size may be a prerequisite for the evolution of cultural complexity, although anthropological studies have produced mixed results and empirical evidence is lacking. Here we use a dual-task computer game to show that cultural evolution strongly depends on population size, as players in larger groups maintained higher cultural complexity. We found that when group size increases, cultural knowledge is less deteriorated, improvements to existing cultural traits are more frequent, and cultural trait diversity is maintained more often. Our results demonstrate how changes in group size can generate both adaptive cultural evolution and maladaptive losses of culturally acquired skills. As humans live in habitats for which they are ill-suited without specific cultural adaptations, it suggests that, in our evolutionary past, group-size reduction may have exposed human societies to significant risks, including societal collapse.

----------------------

Sociality influences cultural complexity

Michael Muthukrishna et al.
Proceedings of the Royal Society: Biological Sciences, 7 January 2014

Abstract:
Archaeological and ethnohistorical evidence suggests a link between a population's size and structure, and the diversity or sophistication of its toolkits or technologies. Addressing these patterns, several evolutionary models predict that both the size and social interconnectedness of populations can contribute to the complexity of its cultural repertoire. Some models also predict that a sudden loss of sociality or of population will result in subsequent losses of useful skills/technologies. Here, we test these predictions with two experiments that permit learners to access either one or five models (teachers). Experiment 1 demonstrates that naive participants who could observe five models, integrate this information and generate increasingly effective skills (using an image editing tool) over 10 laboratory generations, whereas those with access to only one model show no improvement. Experiment 2, which began with a generation of trained experts, shows how learners with access to only one model lose skills (in knot-tying) more rapidly than those with access to five models. In the final generation of both experiments, all participants with access to five models demonstrate superior skills to those with access to only one model. These results support theoretical predictions linking sociality to cumulative cultural evolution.

----------------------

Earliest Stone-Tipped Projectiles from the Ethiopian Rift Date to >279,000 Years Ago

Yonatan Sahle et al.
PLoS ONE, November 2013

Abstract:
Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

----------------------

No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans

Aida Gómez-Robles et al.
Proceedings of the National Academy of Sciences, 5 November 2013, Pages 18196-18201

Abstract:
A central problem in paleoanthropology is the identity of the last common ancestor of Neanderthals and modern humans ([N-MH]LCA). Recently developed analytical techniques now allow this problem to be addressed using a probabilistic morphological framework. This study provides a quantitative reconstruction of the expected dental morphology of the [N-MH]LCA and an assessment of whether known fossil species are compatible with this ancestral position. We show that no known fossil species is a suitable candidate for being the [N-MH]LCA and that all late Early and Middle Pleistocene taxa from Europe have Neanderthal dental affinities, pointing to the existence of a European clade originated around 1 Ma. These results are incongruent with younger molecular divergence estimates and suggest at least one of the following must be true: (i) European fossils and the [N-MH]LCA selectively retained primitive dental traits; (ii) molecular estimates of the divergence between Neanderthals and modern humans are underestimated; or (iii) phenotypic divergence and speciation between both species were decoupled such that phenotypic differentiation, at least in dental morphology, predated speciation.

----------------------

Correlations in the population structure of music, genes and language

Steven Brown et al.
Proceedings of the Royal Society: Biological Sciences, 7 January 2014

Abstract:
We present, to our knowledge, the first quantitative evidence that music and genes may have coevolved by demonstrating significant correlations between traditional group-level folk songs and mitochondrial DNA variation among nine indigenous populations of Taiwan. These correlations were of comparable magnitude to those between language and genes for the same populations, although music and language were not significantly correlated with one another. An examination of population structure for genetics showed stronger parallels to music than to language. Overall, the results suggest that music might have a sufficient time-depth to retrace ancient population movements and, additionally, that it might be capturing different aspects of population history than language. Music may therefore have the potential to serve as a novel marker of human migrations to complement genes, language and other markers.

----------------------

The First Modern Human Dispersals across Africa

Teresa Rito et al.
PLoS ONE, November 2013

Abstract:
The emergence of more refined chronologies for climate change and archaeology in prehistoric Africa, and for the evolution of human mitochondrial DNA (mtDNA), now make it feasible to test more sophisticated models of early modern human dispersals suggested by mtDNA distributions. Here we have generated 42 novel whole-mtDNA genomes belonging to haplogroup L0, the most divergent clade in the maternal line of descent, and analysed them alongside the growing database of African lineages belonging to L0’s sister clade, L1’6. We propose that the last common ancestor of modern human mtDNAs (carried by “mitochondrial Eve”) possibly arose in central Africa ~180 ka, at a time of low population size. By ~130 ka two distinct groups of anatomically modern humans co-existed in Africa: broadly, the ancestors of many modern-day Khoe and San populations in the south and a second central/eastern African group that includes the ancestors of most extant worldwide populations. Early modern human dispersals correlate with climate changes, particularly the tropical African “megadroughts” of MIS 5 (marine isotope stage 5, 135–75 ka) which paradoxically may have facilitated expansions in central and eastern Africa, ultimately triggering the dispersal out of Africa of people carrying haplogroup L3 ~60 ka. Two south to east migrations are discernible within haplogroup LO. One, between 120 and 75 ka, represents the first unambiguous long-range modern human dispersal detected by mtDNA and might have allowed the dispersal of several markers of modernity. A second one, within the last 20 ka signalled by L0d, may have been responsible for the spread of southern click-consonant languages to eastern Africa, contrary to the view that these eastern examples constitute relicts of an ancient, much wider distribution.

----------------------

Material Culture, Landscapes of Action, and Emergent Causation: A New Model for the Origins of the European Neolithic

John Robb
Current Anthropology, December 2013, Pages 657-683

Abstract:
After a century of research, there is still no widely accepted explanation for the spread of farming in Europe. Top-down explanations stress climate change, population increase, or geographic diffusion, but they distort human action reductionistically. Bottom-up explanations stress the local, meaningful choices involved in becoming a farmer, but they do not account for why the Neolithic transition in Europe was so widespread and generally unidirectional. The real problem is theoretical; we need to consider the transformative effects of human–material culture relationships and to relate humans, things, and environments at multiple scales. This article views the Neolithic as a set of new human-material relationships which were experimented with variably but which had unintended consequences resulting in an increasingly coherent, structured, and narrowly based social world. This interplay of local human action and emergent causation made the Neolithic transition difficult to reverse locally; the Neolithic was easy to get into but hard to get out of. On the continental scale, one consequence of this was its slow, patchy, but steady and ultimately almost complete expansion across Europe. As a metamodel, this accommodates current models of the local origin of farming while linking these to emergent large-scale historical patterns.

----------------------

Simulating the Evolution of the Human Family: Cooperative Breeding Increases in Harsh Environments

Paul Smaldino et al.
PLoS ONE, November 2013

Abstract:
Verbal and mathematical models that consider the costs and benefits of behavioral strategies have been useful in explaining animal behavior and are often used as the basis of evolutionary explanations of human behavior. In most cases, however, these models do not account for the effects that group structure and cultural traditions within a human population have on the costs and benefits of its members' decisions. Nor do they consider the likelihood that cultural as well as genetic traits will be subject to natural selection. In this paper, we present an agent-based model that incorporates some key aspects of human social structure and life history. We investigate the evolution of a population under conditions of different environmental harshness and in which selection can occur at the level of the group as well as the level of the individual. We focus on the evolution of a socially learned characteristic related to individuals' willingness to contribute to raising the offspring of others within their family group. We find that environmental harshness increases the frequency of individuals who make such contributions. However, under the conditions we stipulate, we also find that environmental variability can allow groups to survive with lower frequencies of helpers. The model presented here is inevitably a simplified representation of a human population, but it provides a basis for future modeling work toward evolutionary explanations of human behavior that consider the influence of both genetic and cultural transmission of behavior.

----------------------

Teeth and Human Life-History Evolution

Tanya Smith
Annual Review of Anthropology, 2013, Pages 191-208

Abstract:
Modern humans differ from wild great apes in gestation length, weaning age, interbirth interval, sexual maturity, and longevity, but evolutionary anthropologists do not know when these distinctive life-history conditions evolved. Dental tissues contain faithful records of birth and incremental growth, and scholars suggest that molar eruption age, tooth wear, growth disturbances, tooth chemistry, and/or tooth calcification may provide insight into the evolution of human life history. However, recent comparative approaches and empirical evidence demonstrate that caution is warranted when inferring hominin weaning ages or interbirth intervals from first molar eruption, tooth wear, or growth disturbances. Fine-scaled studies of tooth chemistry provide direct evidence of weaning. Early hominin tooth calcification is more ape-like than human-like, and fully modern patterns appear only after Neanderthals and Homo sapiens diverged, concurrent with changes in cranial and postcranial development. Additional studies are needed to relate these novel calcification patterns to specific changes in life-history variables.

----------------------

Dynamics of Green Sahara Periods and Their Role in Hominin Evolution

Juan Larrasoaña, Andrew Roberts & Eelco Rohling
PLoS ONE, October 2013

Abstract:
Astronomically forced insolation changes have driven monsoon dynamics and recurrent humid episodes in North Africa, resulting in green Sahara Periods (GSPs) with savannah expansion throughout most of the desert. Despite their potential for expanding the area of prime hominin habitats and favouring out-of-Africa dispersals, GSPs have not been incorporated into the narrative of hominin evolution due to poor knowledge of their timing, dynamics and landscape composition at evolutionary timescales. We present a compilation of continental and marine paleoenvironmental records from within and around North Africa, which enables identification of over 230 GSPs within the last 8 million years. By combining the main climatological determinants of woody cover in tropical Africa with paleoenvironmental and paleoclimatic data for representative (Holocene and Eemian) GSPs, we estimate precipitation regimes and habitat distributions during GSPs. Their chronology is consistent with the ages of Saharan archeological and fossil hominin sites. Each GSP took 2–3 kyr to develop, peaked over 4–8 kyr, biogeographically connected the African tropics to African and Eurasian mid latitudes, and ended within 2–3 kyr, which resulted in rapid habitat fragmentation. We argue that the well-dated succession of GSPs presented here may have played an important role in migration and evolution of hominins.


Insight

from the

Archives

A weekly newsletter with free essays from past issues of National Affairs and The Public Interest that shed light on the week's pressing issues.

advertisement

Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.