Findings

Lowbrow

Kevin Lewis

October 18, 2014

Rapid Evolution of the Cerebellum in Humans and Other Great Apes

Robert Barton & Chris Venditti
Current Biology, forthcoming

Abstract:
Humans’ unique cognitive abilities are usually attributed to a greatly expanded neocortex, which has been described as “the crowning achievement of evolution and the biological substrate of human mental prowess”. The human cerebellum, however, contains four times more neurons than the neocortex and is attracting increasing attention for its wide range of cognitive functions. Using a method for detecting evolutionary rate changes along the branches of phylogenetic trees, we show that the cerebellum underwent rapid size increase throughout the evolution of apes, including humans, expanding significantly faster than predicted by the change in neocortex size. As a result, humans and other apes deviated significantly from the general evolutionary trend for neocortex and cerebellum to change in tandem, having significantly larger cerebella relative to neocortex size than other anthropoid primates. These results suggest that cerebellar specialization was a far more important component of human brain evolution than hitherto recognized and that technical intelligence was likely to have been at least as important as social intelligence in human cognitive evolution. Given the role of the cerebellum in sensory-motor control and in learning complex action sequences, cerebellar specialization is likely to have underpinned the evolution of humans’ advanced technological capacities, which in turn may have been a preadaptation for language.

----------------------

The parasite-stress theory of sociality, the behavioral immune system, and human social and cognitive uniqueness

Randy Thornhill & Corey Fincher
Evolutionary Behavioral Sciences, October 2014, Pages 257-264

Abstract:
Parasite adversity was an important source of Darwinian selection in human evolutionary history because parasites selected for a diversity of human behavioral parasite-defenses in addition to the numerous defenses provided by the classical human immune system. We argue for a broader view of behavioral immunity than has been emphasized recently. We propose a new hypothesis for the evolution of the unique cognitive and social adaptations of humans. We argue that, in human evolutionary history, as weaponry and other technologies reduced the importance of the physical environment, typical ecological challenges, and predators as agents of selection shaping mental and social traits, parasites became more important selection agents on these traits. Also, we suggest that the reduction of natural selection in the context of predation in human evolutionary history resulted in selection favoring high pathogenicity in human parasites because predation is focused on debilitated prey and hence selects against pathogenicity in the parasites involved. The new hypothesis argues that, in human evolutionary history, temporal variation in local parasite adversity gave rise to frequent change and complexity in the values that are adaptive for individuals to use in their social navigation in relation to the degree of local disease stress, and that selection in this context accounts for the evolution of aspects of human uniqueness in cognitive ability and sociality. The new hypothesis is akin to the social brain hypothesis but is contrary to the version of that hypothesis deemphasizing parasites. Tests of the new hypothesis are addressed.

----------------------

Can Government Be Self-Organized? A Mathematical Model of the Collective Social Organization of Ancient Teotihuacan, Central Mexico

Tom Froese, Carlos Gershenson & Linda Manzanilla
PLoS ONE, October 2014

Abstract:
Teotihuacan was the first urban civilization of Mesoamerica and one of the largest of the ancient world. Following a tradition in archaeology to equate social complexity with centralized hierarchy, it is widely believed that the city’s origin and growth was controlled by a lineage of powerful individuals. However, much data is indicative of a government of co-rulers, and artistic traditions expressed an egalitarian ideology. Yet this alternative keeps being marginalized because the problems of collective action make it difficult to conceive how such a coalition could have functioned in principle. We therefore devised a mathematical model of the city’s hypothetical network of representatives as a formal proof of concept that widespread cooperation was realizable in a fully distributed manner. In the model, decisions become self-organized into globally optimal configurations even though local representatives behave and modify their relations in a rational and selfish manner. This self-optimization crucially depends on occasional communal interruptions of normal activity, and it is impeded when sections of the network are too independent. We relate these insights to theories about community-wide rituals at Teotihuacan and the city’s eventual disintegration.

----------------------

A rock engraving made by Neanderthals in Gibraltar

Joaquín Rodríguez-Vidal et al.
Proceedings of the National Academy of Sciences, 16 September 2014, Pages 13301–13306

Abstract:
The production of purposely made painted or engraved designs on cave walls — a means of recording and transmitting symbolic codes in a durable manner — is recognized as a major cognitive step in human evolution. Considered exclusive to modern humans, this behavior has been used to argue in favor of significant cognitive differences between our direct ancestors and contemporary archaic hominins, including the Neanderthals. Here we present the first known example of an abstract pattern engraved by Neanderthals, from Gorham’s Cave in Gibraltar. It consists of a deeply impressed cross-hatching carved into the bedrock of the cave that has remained covered by an undisturbed archaeological level containing Mousterian artifacts made by Neanderthals and is older than 39 cal kyr BP. Geochemical analysis of the epigenetic coating over the engravings and experimental replication show that the engraving was made before accumulation of the archaeological layers, and that most of the lines composing the design were made by repeatedly and carefully passing a pointed lithic tool into the grooves, excluding the possibility of an unintentional or utilitarian origin (e.g., food or fur processing). This discovery demonstrates the capacity of the Neanderthals for abstract thought and expression through the use of geometric forms.

----------------------

Evolutionary demography of agricultural expansion in preindustrial northern Finland

Samuli Helle et al.
Proceedings of the Royal Society: Biological Sciences, 7 November 2014

Abstract:
A shift from nomadic foraging to sedentary agriculture was a major turning point in human evolutionary history, increasing our population size and eventually leading to the development of modern societies. We however lack understanding of the changes in life histories that contributed to the increased population growth rate of agriculturalists, because comparable individual-based reproductive records of sympatric populations of agriculturalists and foragers are rarely found. Here, we compared key life-history traits and population growth rate using comprehensive data from the seventieth to nineteenth century Northern Finland: indigenous Sami were nomadic hunter-fishers and reindeer herders, whereas sympatric agricultural Finns relied predominantly on animal husbandry. We found that agriculture-based families had higher lifetime fecundity, faster birth spacing and lower maternal mortality. Furthermore, agricultural Finns had 6.2% higher annual population growth rate than traditional Sami, which was accounted by differences between the subsistence modes in age-specific fecundity but not in mortality. Our results provide, to our knowledge, the most detailed demonstration yet of the demographic changes and evolutionary benefits that resulted from agricultural revolution.

----------------------

A Spring Forward for Hominin Evolution in East Africa

Mark Cuthbert & Gail Ashley
PLoS ONE, September 2014

Abstract:
Groundwater is essential to modern human survival during drought periods. There is also growing geological evidence of springs associated with stone tools and hominin fossils in the East African Rift System (EARS) during a critical period for hominin evolution (from 1.8 Ma). However it is not known how vulnerable these springs may have been to climate variability and whether groundwater availability may have played a part in human evolution. Recent interdisciplinary research at Olduvai Gorge, Tanzania, has documented climate fluctuations attributable to astronomic forcing and the presence of paleosprings directly associated with archaeological sites. Using palaeogeological reconstruction and groundwater modelling of the Olduvai Gorge paleo-catchment, we show how spring discharge was likely linked to East African climate variability of annual to Milankovitch cycle timescales. Under decadal to centennial timescales, spring flow would have been relatively invariant providing good water resource resilience through long droughts. For multi-millennial periods, modelled spring flows lag groundwater recharge by 100 s to 1000 years. The lag creates long buffer periods allowing hominins to adapt to new habitats as potable surface water from rivers or lakes became increasingly scarce. Localised groundwater systems are likely to have been widespread within the EARS providing refugia and intense competition during dry periods, thus being an important factor in natural selection and evolution, as well as a vital resource during hominin dispersal within and out of Africa.

----------------------

Ancient human genomes suggest three ancestral populations for present-day Europeans

Iosif Lazaridis et al.
Nature, 18 September 2014, Pages 409–413

Abstract:
We sequenced the genomes of a ~7,000-year-old farmer from Germany and eight ~8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations’ deep relationships and show that early European farmers had ~44% ancestry from a ‘basal Eurasian’ population that split before the diversification of other non-African lineages.

----------------------

Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment

Philip Nigst et al.
Proceedings of the National Academy of Sciences, 7 October 2014, Pages 14394–14399

Abstract:
The first settlement of Europe by modern humans is thought to have occurred between 50,000 and 40,000 calendar years ago (cal B.P.). In Europe, modern human remains of this time period are scarce and often are not associated with archaeology or originate from old excavations with no contextual information. Hence, the behavior of the first modern humans in Europe is still unknown. Aurignacian assemblages — demonstrably made by modern humans — are commonly used as proxies for the presence of fully behaviorally and anatomically modern humans. The site of Willendorf II (Austria) is well known for its Early Upper Paleolithic horizons, which are among the oldest in Europe. However, their age and attribution to the Aurignacian remain an issue of debate. Here, we show that archaeological horizon 3 (AH 3) consists of faunal remains and Early Aurignacian lithic artifacts. By using stratigraphic, paleoenvironmental, and chronological data, AH 3 is ascribed to the onset of Greenland Interstadial 11, around 43,500 cal B.P., and thus is older than any other Aurignacian assemblage. Furthermore, the AH 3 assemblage overlaps with the latest directly radiocarbon-dated Neanderthal remains, suggesting that Neanderthal and modern human presence overlapped in Europe for some millennia, possibly at rather close geographical range. Most importantly, for the first time to our knowledge, we have a high-resolution environmental context for an Early Aurignacian site in Central Europe, demonstrating an early appearance of behaviorally modern humans in a medium-cold steppe-type environment with some boreal trees along valleys around 43,500 cal B.P.

----------------------

Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins

Shai Carmi et al.
Nature Communications, September 2014

Abstract:
The Ashkenazi Jewish (AJ) population is a genetic isolate close to European and Middle Eastern groups, with genetic diversity patterns conducive to disease mapping. Here we report high-depth sequencing of 128 complete genomes of AJ controls. Compared with European samples, our AJ panel has 47% more novel variants per genome and is eightfold more effective at filtering benign variants out of AJ clinical genomes. Our panel improves imputation accuracy for AJ SNP arrays by 28%, and covers at least one haplotype in ≈67% of any AJ genome with long, identical-by-descent segments. Reconstruction of recent AJ history from such segments confirms a recent bottleneck of merely ≈350 individuals. Modelling of ancient histories for AJ and European populations using their joint allele frequency spectrum determines AJ to be an even admixture of European and likely Middle Eastern origins. We date the split between the two ancestral populations to ≈12–25 Kyr, suggesting a predominantly Near Eastern source for the repopulation of Europe after the Last Glacial Maximum.

----------------------

Classic Maya Bloodletting and the Cultural Evolution of Religious Rituals: Quantifying Patterns of Variation in Hieroglyphic Texts

Jessica Munson et al.
PLoS ONE, September 2014

Abstract:
Religious rituals that are painful or highly stressful are hypothesized to be costly signs of commitment essential for the evolution of complex society. Yet few studies have investigated how such extreme ritual practices were culturally transmitted in past societies. Here, we report the first study to analyze temporal and spatial variation in bloodletting rituals recorded in Classic Maya (ca. 250–900 CE) hieroglyphic texts. We also identify the sociopolitical contexts most closely associated with these ancient recorded rituals. Sampling an extensive record of 2,480 hieroglyphic texts, this study identifies every recorded instance of the logographic sign for the word ch’ahb’ that is associated with ritual bloodletting. We show that documented rituals exhibit low frequency whose occurrence cannot be predicted by spatial location. Conversely, network ties better capture the distribution of bloodletting rituals across the southern Maya region. Our results indicate that bloodletting rituals by Maya nobles were not uniformly recorded, but were typically documented in association with antagonistic statements and may have signaled royal commitments among connected polities.

----------------------

Climate windows for Polynesian voyaging to New Zealand and Easter Island

Ian Goodwin, Stuart Browning & Atholl Anderson
Proceedings of the National Academy of Sciences, 14 October 2014, Pages 14716–14721

Abstract:
Debate about initial human migration across the immense area of East Polynesia has focused upon seafaring technology, both of navigation and canoe capabilities, while temporal variation in sailing conditions, notably through climate change, has received less attention. One model of Polynesian voyaging observes that as tradewind easterlies are currently dominant in the central Pacific, prehistoric colonization canoes voyaging eastward to and through central East Polynesia (CEP: Society, Tuamotu, Marquesas, Gambier, Southern Cook, and Austral Islands) and to Easter Island probably had a windward capacity. Similar arguments have been applied to voyaging from CEP to New Zealand against prevailing westerlies. An alternative view is that migration required reliable off-wind sailing routes. We investigate the marine climate and potential voyaging routes during the Medieval Climate Anomaly (MCA), A.D. 800–1300, when the initial colonization of CEP and New Zealand occurred. Paleoclimate data assimilation is used to reconstruct Pacific sea level pressure and wind field patterns at bidecadal resolution during the MCA. We argue here that changing wind field patterns associated with the MCA provided conditions in which voyaging to and from the most isolated East Polynesian islands, New Zealand, and Easter Island was readily possible by off-wind sailing. The intensification and poleward expansion of the Pacific subtropical anticyclone culminating in A.D. 1140–1260 opened an anomalous climate window for off-wind sailing routes to New Zealand from the Southern Austral Islands, the Southern Cook Islands, and Tonga/Fiji Islands.


Insight

from the

Archives

A weekly newsletter with free essays from past issues of National Affairs and The Public Interest that shed light on the week's pressing issues.

advertisement

Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.