Findings

Long gone

Kevin Lewis

February 16, 2019

Earth system impacts of the European arrival and Great Dying in the Americas after 1492
Alexander Koch et al.
Quaternary Science Reviews, 1 March 2019, Pages 13-36

Abstract:
Human impacts prior to the Industrial Revolution are not well constrained. We investigate whether the decline in global atmospheric CO2 concentration by 7–10 ppm in the late 1500s and early 1600s which globally lowered surface air temperatures by 0.15∘C, were generated by natural forcing or were a result of the large-scale depopulation of the Americas after European arrival, subsequent land use change and secondary succession. We quantitatively review the evidence for (i) the pre-Columbian population size, (ii) their per capita land use, (iii) the post-1492 population loss, (iv) the resulting carbon uptake of the abandoned anthropogenic landscapes, and then compare these to potential natural drivers of global carbon declines of 7–10 ppm. From 119 published regional population estimates we calculate a pre-1492 CE population of 60.5 million (interquartile range, IQR 44.8–78.2 million), utilizing 1.04 ha land per capita (IQR 0.98–1.11). European epidemics removed 90% (IQR 87–92%) of the indigenous population over the next century. This resulted in secondary succession of 55.8 Mha (IQR 39.0–78.4 Mha) of abandoned land, sequestering 7.4 Pg C (IQR 4.9–10.8 Pg C), equivalent to a decline in atmospheric CO2 of 3.5 ppm (IQR 2.3–5.1 ppm CO2). Accounting for carbon cycle feedbacks plus LUC outside the Americas gives a total 5 ppm CO2 additional uptake into the land surface in the 1500s compared to the 1400s, 47–67% of the atmospheric CO2 decline. Furthermore, we show that the global carbon budget of the 1500s cannot be balanced until large-scale vegetation regeneration in the Americas is included. The Great Dying of the Indigenous Peoples of the Americas resulted in a human-driven global impact on the Earth System in the two centuries prior to the Industrial Revolution.


Radiocarbon dates and Bayesian modeling support maritime diffusion model for megaliths in Europe
Bettina Schulz Paulsson
Proceedings of the National Academy of Sciences, forthcoming

Abstract:
There are two competing hypotheses for the origin of megaliths in Europe. The conventional view from the late 19th and early 20th centuries was of a single-source diffusion of megaliths in Europe from the Near East through the Mediterranean and along the Atlantic coast. Following early radiocarbon dating in the 1970s, an alternative hypothesis arose of regional independent developments in Europe. This model has dominated megalith research until today. We applied a Bayesian statistical approach to 2,410 currently available radiocarbon results from megalithic, partly premegalithic, and contemporaneous nonmegalithic contexts in Europe to resolve this long-standing debate. The radiocarbon results suggest that megalithic graves emerged within a brief time interval of 200 y to 300 y in the second half of the fifth millennium calibrated years BC in northwest France, the Mediterranean, and the Atlantic coast of Iberia. We found decisive support for the spread of megaliths along the sea route in three main phases. Thus, a maritime diffusion model is the most likely explanation of their expansion.


A western route of prehistoric human migration from Africa into the Iberian Peninsula
Gloria González-Fortes et al.
Proceedings of the Royal Society: Biological Sciences, 23 January 2019

Abstract:
Being at the western fringe of Europe, Iberia had a peculiar prehistory and a complex pattern of Neolithization. A few studies, all based on modern populations, reported the presence of DNA of likely African origin in this region, generally concluding it was the result of recent gene flow, probably during the Islamic period. Here, we provide evidence of much older gene flow from Africa to Iberia by sequencing whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP (from the Middle Neolithic to the Bronze Age). We found one of them to carry an unequivocal sub-Saharan mitogenome of most probably West or West-Central African origin, to our knowledge never reported before in prehistoric remains outside Africa. Our analyses of ancient nuclear genomes show small but significant levels of sub-Saharan African affinity in several ancient Iberian samples, which indicates that what we detected was not an occasional individual phenomenon, but an admixture event recognizable at the population level. We interpret this result as evidence of an early migration process from Africa into the Iberian Peninsula through a western route, possibly across the Strait of Gibraltar.


Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave
Katerina Douka et al.
Nature, 31 January 2019, Pages 640–644

Abstract:
Denisova Cave in the Siberian Altai (Russia) is a key site for understanding the complex relationships between hominin groups that inhabited Eurasia in the Middle and Late Pleistocene epoch. DNA sequenced from human remains found at this site has revealed the presence of a hitherto unknown hominin group, the Denisovans, and high-coverage genomes from both Neanderthal and Denisovan fossils provide evidence for admixture between these two populations. Determining the age of these fossils is important if we are to understand the nature of hominin interaction, and aspects of their cultural and subsistence adaptations. Here we present 50 radiocarbon determinations from the late Middle and Upper Palaeolithic layers of the site. We also report three direct dates for hominin fragments and obtain a mitochondrial DNA sequence for one of them. We apply a Bayesian age modelling approach that combines chronometric (radiocarbon, uranium series and optical ages), stratigraphic and genetic data to calculate probabilistically the age of the human fossils at the site. Our modelled estimate for the age of the oldest Denisovan fossil suggests that this group was present at the site as early as 195,000 years ago (at 95.4% probability). All Neanderthal fossils — as well as Denisova 11, the daughter of a Neanderthal and a Denisovan — date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000–76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as AD 1950). On the basis of current archaeological evidence, it may be assumed that these artefacts are associated with the Denisovan population. It is not currently possible to determine whether anatomically modern humans were involved in their production, as modern-human fossil and genetic evidence of such antiquity has not yet been identified in the Altai region.


Insight

from the

Archives

A weekly newsletter with free essays from past issues of National Affairs and The Public Interest that shed light on the week's pressing issues.

advertisement

Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.