If you can't take the heat
Climate Amenities, Climate Change, and American Quality of Life
David Albouy et al.
NBER Working Paper, March 2013
Abstract:
We present a hedonic framework to estimate U.S. households' preferences over local climates, using detailed weather and 2000 Census data. We find that Americans favor an average daily temperature of 65 degrees Fahrenheit, will pay more on the margin to avoid excess heat than cold, and are not substantially more averse to extremes than to temperatures that are merely uncomfortable. These preferences vary by location due to sorting or adaptation. Changes in climate amenities under business-as-usual predictions imply annual welfare losses of 1 to 3 percent of income by 2100, holding technology and preferences constant.
----------------------
Stephan Lewandowsky, Klaus Oberauer & Gilles Gignac
Psychological Science, forthcoming
Abstract:
Although nearly all domain experts agree that carbon dioxide emissions are altering the world's climate, segments of the public remain unconvinced by the scientific evidence. Internet blogs have become a platform for denial of climate change, and bloggers have taken a prominent role in questioning climate science. We report a survey of climate-blog visitors to identify the variables underlying acceptance and rejection of climate science. Our findings parallel those of previous work and show that endorsement of free-market economics predicted rejection of climate science. Endorsement of free markets also predicted the rejection of other established scientific findings, such as the facts that HIV causes AIDS and that smoking causes lung cancer. We additionally show that, above and beyond endorsement of free markets, endorsement of a cluster of conspiracy theories (e.g., that the Federal Bureau of Investigation killed Martin Luther King, Jr.) predicted rejection of climate science as well as other scientific findings. Our results provide empirical support for previous suggestions that conspiratorial thinking contributes to the rejection of science. Acceptance of science, by contrast, was strongly associated with the perception of a consensus among scientists.
----------------------
The pivotal role of perceived scientific consensus in acceptance of science
Stephan Lewandowsky, Gilles Gignac & Samuel Vaughan
Nature Climate Change, April 2013, Pages 399-404
Abstract:
Although most experts agree that CO2 emissions are causing anthropogenic global warming (AGW), public concern has been declining. One reason for this decline is the ‘manufacture of doubt' by political and vested interests, which often challenge the existence of the scientific consensus. The role of perceived consensus in shaping public opinion is therefore of considerable interest: in particular, it is unknown whether consensus determines people's beliefs causally. It is also unclear whether perception of consensus can override people's ‘worldviews', which are known to foster rejection of AGW. Study 1 shows that acceptance of several scientific propositions - from HIV/AIDS to AGW - is captured by a common factor that is correlated with another factor that captures perceived scientific consensus. Study 2 reveals a causal role of perceived consensus by showing that acceptance of AGW increases when consensus is highlighted. Consensus information also neutralizes the effect of worldview.
----------------------
A Reconstruction of Regional and Global Temperature for the Past 11,300 Years
Shaun Marcott et al.
Science, 8 March 2013, Pages 1198-1201
Abstract:
Surface temperature reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time. Here we provide a broader perspective by reconstructing regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records. Early Holocene (10,000 to 5000 years ago) warmth is followed by ~0.7°C cooling through the middle to late Holocene (<5000 years ago), culminating in the coolest temperatures of the Holocene during the Little Ice Age, about 200 years ago. This cooling is largely associated with ~2°C change in the North Atlantic. Current global temperatures of the past decade have not yet exceeded peak interglacial values but are warmer than during ~75% of the Holocene temperature history. Intergovernmental Panel on Climate Change model projections for 2100 exceed the full distribution of Holocene temperature under all plausible greenhouse gas emission scenarios.
----------------------
Projected Atlantic hurricane surge threat from rising temperatures
Aslak Grinsted, John Moore & Svetlana Jevrejeva
Proceedings of the National Academy of Sciences, 2 April 2013, Pages 5369-5373
Abstract:
Detection and attribution of past changes in cyclone activity are hampered by biased cyclone records due to changes in observational capabilities. Here, we relate a homogeneous record of Atlantic tropical cyclone activity based on storm surge statistics from tide gauges to changes in global temperature patterns. We examine 10 competing hypotheses using nonstationary generalized extreme value analysis with different predictors (North Atlantic Oscillation, Southern Oscillation, Pacific Decadal Oscillation, Sahel rainfall, Quasi-Biennial Oscillation, radiative forcing, Main Development Region temperatures and its anomaly, global temperatures, and gridded temperatures). We find that gridded temperatures, Main Development Region, and global average temperature explain the observations best. The most extreme events are especially sensitive to temperature changes, and we estimate a doubling of Katrina magnitude events associated with the warming over the 20th century. The increased risk depends on the spatial distribution of the temperature rise with highest sensitivity from tropical Atlantic, Central America, and the Indian Ocean. Statistically downscaling 21st century warming patterns from six climate models results in a twofold to sevenfold increase in the frequency of Katrina magnitude events for a 1 °C rise in global temperature (using BNU-ESM, BCC-CSM-1.1, CanESM2, HadGEM2-ES, INM-CM4, and NorESM1-M).
----------------------
Mark Jacobson et al.
Energy Policy, June 2013, Pages 585-601
Abstract:
This study analyzes a plan to convert New York State's (NYS's) all-purpose (for electricity, transportation, heating/cooling, and industry) energy infrastructure to one derived entirely from wind, water, and sunlight (WWS) generating electricity and electrolytic hydrogen. Under the plan, NYS's 2030 all-purpose end-use power would be provided by 10% onshore wind (4020 5-MW turbines), 40% offshore wind (12,700 5-MW turbines), 10% concentrated solar (387 100-MW plants), 10% solar-PV plants (828 50-MW plants), 6% residential rooftop PV (∼5 million 5-kW systems), 12% commercial/government rooftop PV (∼500,000 100-kW systems), 5% geothermal (36 100-MW plants), 0.5% wave (1910 0.75-MW devices), 1% tidal (2600 1-MW turbines), and 5.5% hydroelectric (6.6 1300-MW plants, of which 89% exist). The conversion would reduce NYS's end-use power demand ∼37% and stabilize energy prices since fuel costs would be zero. It would create more jobs than lost because nearly all NYS energy would now be produced in-state. NYS air pollution mortality and its costs would decline by ∼4000 (1200-7600) deaths/yr, and $33 (10-76) billion/yr (3% of 2010 NYS GDP), respectively, alone repaying the 271 GW installed power needed within ∼17 years, before accounting for electricity sales. NYS's own emission decreases would reduce 2050 U.S. climate costs by ∼$3.2 billion/yr.
----------------------
Assessment of the first consensus prediction on climate change
David Frame & Dáithí Stone
Nature Climate Change, April 2013, Pages 357-359
Abstract:
In 1990, climate scientists from around the world wrote the First Assessment Report of the Intergovernmental Panel on Climate Change. It contained a prediction of the global mean temperature trend over the 1990-2030 period that, halfway through that period, seems accurate. This is all the more remarkable in hindsight, considering that a number of important external forcings were not included. So how did this success arise? In the end, the greenhouse-gas-induced warming is largely overwhelming the other forcings, which are only of secondary importance on the 20-year timescale.
----------------------
The economic impact of climate change in the 20th and 21st centuries
Richard Tol
Climatic Change, April 2013, Pages 795-808
Abstract:
The national version of FUND3.6 is used to backcast the impacts of climate change to the 20th century and extrapolate to the 21st century. Carbon dioxide fertilization of crops and reduced energy demand for heating are the main positive impacts. Climate change had a negative effect on water resources and, in most years, human health. Most countries benefitted from climate change until 1980, but after that the trend is negative for poor countries and positive for rich countries. The global average impact was positive in the 20th century. In the 21st century, impacts turn negative in most countries, rich and poor. Energy demand, water resources, biodiversity and sea level rise are the main negative impacts; the impacts of climate change on human health and agriculture remain positive until 2100.
----------------------
Climate change, wine, and conservation
Lee Hannah et al.
Proceedings of the National Academy of Sciences, forthcoming
Abstract:
Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.
----------------------
Your opinion on climate change might not be as common as you think
Z. Leviston, I. Walker & S. Morwinski
Nature Climate Change, April 2013, Pages 334-337
Abstract:
Political and media debate on the existence and causes of climate change has become increasingly factious in several western countries, often resting on claims and counter-claims about what most citizens really think. There are several well-established phenomena in psychology about how people perceive the prevalence of opinions, including the false consensus effect (a tendency to overestimate how common one's ‘own' opinion is) and pluralistic ignorance (where most people privately reject an opinion, but assume incorrectly that most others accept it). We investigated these biases in people's opinions about the existence and causes of climate change. In two surveys conducted 12 months apart in Australia (n = 5,036; n = 5,030), respondents were asked their own opinion about the nature of climate change, and then asked to estimate levels of opinion among the general population. We demonstrate that opinions about climate change are subject to strong false consensus effects, that people grossly overestimate the numbers of people who reject the existence of climate change in the broader community, and that people with high false consensus bias are less likely to change their opinions.
----------------------
External costs of nuclear: Greater or less than the alternatives?
Ari Rabl & Veronika Rabl
Energy Policy, June 2013, Pages 575-584
Abstract:
Since Fukushima many are calling for a shutdown of nuclear power plants. To see whether such a shutdown would reduce the risks for health and environment, the external costs of nuclear electricity are compared with alternatives that could replace it. The frequency of catastrophic nuclear accidents is based on the historical record, about one in 25 years for the plants built to date, an order of magnitude higher than the safety goals of the U.S. Nuclear Regulatory Commission. Impacts similar to Chernobyl and Fukushima are assumed to estimate the cost. A detailed comparison is presented with wind as alternative with the lowest external cost. The variability of wind necessitates augmentation by other sources, primarily fossil fuels, because storage at the required scale is in most regions too expensive. The external costs of natural gas combined cycle are taken as 0.6 €cent/kWh due to health effects of air pollution and 1.25 €cent/kWh due to greenhouse gases (at 25€/tCO2eq) for the central estimate, but a wide range of different parameters is also considered, both for nuclear and for the alternatives. Although the central estimate of external costs of the wind-based alternative is higher than that of nuclear, the uncertainty ranges overlap.
----------------------
Benjamin Preston
Global Environmental Change, forthcoming
Abstract:
Despite improvements in disaster risk management in the United States, a trend toward increasing economic losses from extreme weather events has been observed. This trend has been attributed to growth in socioeconomic exposure to extremes, a process characterized by strong path dependence. To understand the influence of path dependence on past and future losses, an index of potential socioeconomic exposure was developed at the U.S. county level based upon population size and inflation-adjusted wealth proxies. Since 1960, exposure has increased preferentially in the U.S. Southeast (particularly coastal and urban counties) and Southwest relative to the Great Plains and Northeast. Projected changes in exposure from 2009 to 2054 based upon scenarios of future demographic and economic change suggest a long-term commitment to increasing, but spatially heterogeneous, exposure to extremes, independent of climate change. The implications of this path dependence are examined in the context of several natural hazards. Using methods previously reported in the literature, annualized county-level losses from 1960 to 2008 for five climate-related natural hazards were normalized to 2009 values and then scaled based upon projected changes in exposure and two different estimates of the exposure elasticity of losses. Results indicate that losses from extreme events will grow by a factor of 1.3-1.7 and 1.8-3.9 by 2025 and 2050, respectively, with the exposure elasticity representing a major source of uncertainty. The implications of increasing physical vulnerability to extreme weather events for investments in disaster risk management are ultimately contingent upon the normative values of societal actors.
----------------------
The relationship between personal experience and belief in the reality of global warming
Teresa Myers et al.
Nature Climate Change, April 2013, Pages 343-347
Abstract:
In this paper, we address the chicken-or-egg question posed by two alternative explanations for the relationship between perceived personal experience of global warming and belief certainty that global warming is happening: Do observable climate impacts create opportunities for people to become more certain of the reality of global warming, or does prior belief certainty shape people's perceptions of impacts through a process of motivated reasoning? We use data from a nationally representative sample of Americans surveyed first in 2008 and again in 2011; these longitudinal data allow us to evaluate the causal relationships between belief certainty and perceived experience, assessing the impact of each on the other over time. Among the full survey sample, we found that both processes occurred: ‘experiential learning', where perceived personal experience of global warming led to increased belief certainty, and ‘motivated reasoning', where high belief certainty influenced perceptions of personal experience. We then tested and confirmed the hypothesis that motivated reasoning occurs primarily among people who are already highly engaged in the issue whereas experiential learning occurs primarily among people who are less engaged in the issue, which is particularly important given that approximately 75% of American adults currently have low levels of engagement.
----------------------
Michael Sivak
Environmental Research Letters, Winter 2013
Abstract:
Energy demand for climate control was analyzed for Miami (the warmest large metropolitan area in the US) and Minneapolis (the coldest large metropolitan area). The following relevant parameters were included in the analysis: (1) climatological deviations from the desired indoor temperature as expressed in heating and cooling degree days, (2) efficiencies of heating and cooling appliances, and (3) efficiencies of power-generating plants. The results indicate that climate control in Minneapolis is about 3.5 times as energy demanding as in Miami. This finding suggests that, in the US, living in cold climates is more energy demanding than living in hot climates.
----------------------
Recent temperature extremes at high northern latitudes unprecedented in the past 600 years
Martin Tingley & Peter Huybers
Nature, 11 April 2013, Pages 201-205
Abstract:
Recently observed extreme temperatures at high northern latitudes are rare by definition, making the longer time span afforded by climate proxies important for assessing how the frequency of such extremes may be changing. Previous reconstructions of past temperature variability have demonstrated that recent warmth is anomalous relative to preceding centuries or millennia, but extreme events can be more thoroughly evaluated using a spatially resolved approach that provides an ensemble of possible temperature histories. Here, using a hierarchical Bayesian analysis of instrumental, tree-ring, ice-core and lake-sediment records, we show that the magnitude and frequency of recent warm temperature extremes at high northern latitudes are unprecedented in the past 600 years. The summers of 2005, 2007, 2010 and 2011 were warmer than those of all prior years back to 1400 (probability P > 0.95), in terms of the spatial average. The summer of 2010 was the warmest in the previous 600 years in western Russia (P > 0.99) and probably the warmest in western Greenland and the Canadian Arctic as well (P > 0.90). These and other recent extremes greatly exceed those expected from a stationary climate, but can be understood as resulting from constant space-time variability about an increased mean temperature.
----------------------
Changing social contracts in climate-change adaptation
Neil Adger et al.
Nature Climate Change, April 2013, Pages 330-333
Abstract:
Risks from extreme weather events are mediated through state, civil society and individual action. We propose evolving social contracts as a primary mechanism by which adaptation to climate change proceeds. We use a natural experiment of policy and social contexts of the UK and Ireland affected by the same meteorological event and resultant flooding in November 2009. We analyse data from policy documents and from household surveys of 356 residents in western Ireland and northwest England. We find significant differences between perceptions of individual responsibility for protection across the jurisdictions and between perceptions of future risk from populations directly affected by flooding events. These explain differences in stated willingness to take individual adaptive actions when state support retrenches. We therefore show that expectations for state protection are critical in mediating impacts and promoting longer-term adaptation. We argue that making social contracts explicit may smooth pathways to effective and legitimate adaptation.
----------------------
Energy use and CO2 emissions of China's industrial sector from a global perspective
Sheng Zhou et al.
Energy Policy, forthcoming
Abstract:
The industrial sector has accounted for more than 50% of China's final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China's per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.
----------------------
Trends in hourly rainfall statistics in the United States under a warming climate
T. Muschinski & J.I. Katz
Nature Climate Change, forthcoming
Abstract:
It is now widely accepted that the mean world climate has warmed since the beginning of climatologically significant anthropogenic emission of greenhouse gases. Warming may be accompanied by changes in the rate of extreme weather events such as severe storms and drought. Here we use hourly precipitation data from 13 stations in the 48 contiguous United States to determine trends in the frequency of such events, taking the normalized variance and a renormalized fourth moment of the precipitation measurements, averaged over decades, as objective measures of the frequency and severity of extreme weather. Using data mostly from the period 1940-1999 but also two longer data series, periods that include the rapid warming that seems to have begun at approximately 1970, we find a significant increase of 6.5±1.3%(1σ) per decade in the normalized variance at a site on the Olympic Peninsula at which it is low. We place statistical limits on any trend at the remaining 12 sites, where the normalized variance and its uncertainty are larger. At most sites these limits are consistent with the same rate of linear increase as at the Olympic Peninsula site, but exclude the same rate of percentage increase.
----------------------
Ocean acidification and its impacts: An expert survey
Jean-Pierre Gattuso, Katharine Mach & Granger Morgan
Climatic Change, April 2013, Pages 725-738
Abstract:
The oceans moderate the rate and severity of climate change by absorbing massive amounts of anthropogenic CO2 but this results in large-scale changes in seawater chemistry, which are collectively referred to as anthropogenic ocean acidification. Despite its potentially widespread consequences, the problem of ocean acidification has been largely absent from most policy discussions of CO2 emissions, both because the science is relatively new and because the research community has yet to deliver a clear message to decision makers regarding its impacts. Here we report the results of the first expert survey in the field of ocean acidification. Fifty-three experts, who had previously participated in an IPCC workshop, were asked to assess 22 declarative statements about ocean acidification and its consequences. We find a relatively strong consensus on most issues related to past, present and future chemical aspects of ocean acidification: non-anthropogenic ocean acidification events have occurred in the geological past, anthropogenic CO2 emissions are the main (but not the only) mechanism generating the current ocean acidification event, and anthropogenic ocean acidification that has occurred due to historical fossil fuel emissions will be felt for centuries. Experts generally agreed that there will be impacts on biological and ecological processes and biogeochemical feedbacks but levels of agreement were lower, with more variability across responses. Levels of agreement were higher for statements regarding calcification, primary production and nitrogen fixation than for those about impacts on foodwebs. The levels of agreement for statements pertaining to socio-economic impacts, such as impacts on food security, and to more normative policy issues, were relatively low.
----------------------
Changing Frequency of Heavy Rainfall over the Central United States
Gabriele Villarini, James Smith & Gabriel Vecchi
Journal of Climate, January 2013, Pages 351-357
Abstract:
Records of daily rainfall accumulations from 447 rain gauge stations over the central United States (Minnesota, Wisconsin, Michigan, Iowa, Illinois, Indiana, Missouri, Kentucky, Tennessee, Arkansas, Louisiana, Alabama, and Mississippi) are used to assess past changes in the frequency of heavy rainfall. Each station has a record of at least 50 yr, and the data cover most of the twentieth century and the first decade of the twenty-first century. Analyses are performed using a peaks-over-threshold approach, and, for each station, the 95th percentile is used as the threshold. Because of the count nature of the data and to account for both abrupt and slowly varying changes in the heavy rainfall distribution, a segmented regression is used to detect changepoints at unknown points in time. The presence of trends is assessed by means of a Poisson regression model to examine whether the rate of occurrence parameter is a linear function of time (by means of a logarithmic link function). The results point to increasing trends in heavy rainfall over the northern part of the study domain. Examination of the surface temperature record suggests that these increasing trends occur over the area with the largest increasing trends in temperature and, consequently, with an increase in atmospheric water vapor.
----------------------
Response of snow-dependent hydrologic extremes to continued global warming
Noah Diffenbaugh, Martin Scherer & Moetasim Ashfaq
Nature Climate Change, April 2013, Pages 379-384
Abstract:
Snow accumulation is critical for water availability in the Northern Hemisphere, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions. Although regional hydrologic changes have been observed, the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate-change impacts. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near-term decades and at 2 °C global warming. The occurrence of extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 °C above the pre-industrial baseline.
----------------------
Funding Global Public Goods: The Dark Side of Multilateralism
Patrick Bayer & Johannes Urpelainen
Review of Policy Research, March 2013, Pages 160-189
Abstract:
The funding of global public goods, such as climate mitigation, presents a complex strategic problem. Potential recipients demand side payments for implementing projects that furnish global public goods, and donors can cooperate to provide the funding. We offer a game-theoretic analysis of this problem. In our model, a recipient demands project funding. Donors can form a multilateral program to jointly fund the project. If no program is formed, bilateral funding remains a possibility. We find that donors rely on multilateralism if their preferences are relatively symmetric and domestic political constraints on funding are lax. In this case, the recipient secures large rents from project implementation. Thus, even donors with strong interests in global public good provision have incentives to oppose institutional arrangements that promote multilateral funding. These incentives have played an important role in multilateral negotiations on climate finance, especially in Cancun (2010) and Durban (2011).
----------------------
Evolutionary change during experimental ocean acidification
Melissa Pespeni et al.
Proceedings of the National Academy of Sciences, forthcoming
Abstract:
Rising atmospheric carbon dioxide (CO2) conditions are driving unprecedented changes in seawater chemistry, resulting in reduced pH and carbonate ion concentrations in the Earth's oceans. This ocean acidification has negative but variable impacts on individual performance in many marine species. However, little is known about the adaptive capacity of species to respond to an acidified ocean, and, as a result, predictions regarding future ecosystem responses remain incomplete. Here we demonstrate that ocean acidification generates striking patterns of genome-wide selection in purple sea urchins (Strongylocentrotus purpuratus) cultured under different CO2 levels. We examined genetic change at 19,493 loci in larvae from seven adult populations cultured under realistic future CO2 levels. Although larval development and morphology showed little response to elevated CO2, we found substantial allelic change in 40 functional classes of proteins involving hundreds of loci. Pronounced genetic changes, including excess amino acid replacements, were detected in all populations and occurred in genes for biomineralization, lipid metabolism, and ion homeostasis - gene classes that build skeletons and interact in pH regulation. Such genetic change represents a neglected and important impact of ocean acidification that may influence populations that show few outward signs of response to acidification. Our results demonstrate the capacity for rapid evolution in the face of ocean acidification and show that standing genetic variation could be a reservoir of resilience to climate change in this coastal upwelling ecosystem. However, effective response to strong natural selection demands large population sizes and may be limited in species impacted by other environmental stressors.