Descent of Man and Woman
The Neandertal Progesterone Receptor
Hugo Zeberg, Janet Kelso & Svante Pääbo
Molecular Biology and Evolution, forthcoming
Abstract:
The hormone progesterone is important for preparing the uterine lining for egg implantation and in maintaining the early stages of pregnancy. The gene encoding the progesterone receptor (PGR) carries introgressed Neandertal haplotypes with two non-synonymous substitutions and a mobile Alu element. They have reached nearly 20% frequency in non-Africans and have been associated with preterm birth. Here we show that whereas one of the missense substitutions appears fixed among Neandertals, the other substitution as well as the Alu insertion were polymorphic among Neandertals. We show that two Neandertal haplotypes carrying the PGR gene entered the modern human population and that present-day carriers of the Neandertal haplotypes express higher levels of the receptor. In a cohort of present-day Britons, these carriers have more siblings, fewer miscarriages and less bleeding during early pregnancy suggesting that it promotes fertility. This may explain the high frequency of the Neandertal progesterone receptor alleles in modern human populations.
Genomic analysis of the natural history of attention-deficit/hyperactivity disorder using Neanderthal and ancient Homo sapiens samples
Paula Esteller-Cucala et al.
Scientific Reports, May 2020
Abstract:
Attention-deficit/hyperactivity disorder (ADHD) is an impairing neurodevelopmental condition highly prevalent in current populations. Several hypotheses have been proposed to explain this paradox, mainly in the context of the Paleolithic versus Neolithic cultural shift but especially within the framework of the mismatch theory. This theory elaborates on how a particular trait once favoured in an ancient environment might become maladaptive upon environmental changes. However, given the lack of genomic data available for ADHD, these theories have not been empirically tested. We took advantage of the largest GWAS meta-analysis available for this disorder consisting of over 20,000 individuals diagnosed with ADHD and 35,000 controls, to assess the evolution of ADHD-associated alleles in European populations using archaic, ancient and modern human samples. We also included Approximate Bayesian computation coupled with deep learning analyses and singleton density scores to detect human adaptation. Our analyses indicate that ADHD-associated alleles are enriched in loss of function intolerant genes, supporting the role of selective pressures in this early-onset phenotype. Furthermore, we observed that the frequency of variants associated with ADHD has steadily decreased since Paleolithic times, particularly in Paleolithic European populations compared to samples from the Neolithic Fertile Crescent. We demonstrate this trend cannot be explained by African admixture nor Neanderthal introgression, since introgressed Neanderthal alleles are enriched in ADHD risk variants. All analyses performed support the presence of long-standing selective pressures acting against ADHD-associated alleles until recent times. Overall, our results are compatible with the mismatch theory for ADHD but suggest a much older time frame for the evolution of ADHD-associated alleles compared to previous hypotheses.
Quantifying the potential causes of Neanderthal extinction: Abrupt climate change versus competition and interbreeding
Axel Timmermann
Quaternary Science Reviews, forthcoming
Abstract:
Anatomically Modern Humans are the sole survivor of a group of hominins that inhabited our planet during the last ice age and that included, among others, Homo neanderthalensis, Homo denisova, and Homo erectus. Whether previous hominin extinctions were triggered by external factors, such as abrupt climate change, volcanic eruptions or whether competition and interbreeding played major roles in their demise still remains unresolved. Here I present a spatially resolved numerical hominin dispersal model (HDM) with empirically constrained key parameters that simulates the migration and interaction of Anatomically Modern Humans and Neanderthals in the rapidly varying climatic environment of the last ice age. The model simulations document that rapid temperature and vegetation changes associated with Dansgaard-Oeschger events were not major drivers of global Neanderthal extinction between 50 and 35 thousand years ago, but played important roles regionally, in particular over northern Europe. According to a series of parameter sensitivity experiments conducted with the HDM, a realistic extinction of the Neanderthal population can only be simulated when Homo sapiens is chosen to be considerably more effective in exploiting scarce glacial food resources as compared to Neanderthals.
Ancient genomes from present-day France unveil 7,000 years of its demographic history
Samantha Brunel et al.
Proceedings of the National Academy of Sciences, forthcoming
Abstract:
Genomic studies conducted on ancient individuals across Europe have revealed how migrations have contributed to its present genetic landscape, but the territory of present-day France has yet to be connected to the broader European picture. We generated a large dataset comprising the complete mitochondrial genomes, Y-chromosome markers, and genotypes of a number of nuclear loci of interest of 243 individuals sampled across present-day France over a period spanning 7,000 y, complemented with a partially overlapping dataset of 58 low-coverage genomes. This panel provides a high-resolution transect of the dynamics of maternal and paternal lineages in France as well as of autosomal genotypes. Parental lineages and genomic data both revealed demographic patterns in France for the Neolithic and Bronze Age transitions consistent with neighboring regions, first with a migration wave of Anatolian farmers followed by varying degrees of admixture with autochthonous hunter-gatherers, and then substantial gene flow from individuals deriving part of their ancestry from the Pontic steppe at the onset of the Bronze Age. Our data have also highlighted the persistence of Magdalenian-associated ancestry in hunter-gatherer populations outside of Spain and thus provide arguments for an expansion of these populations at the end of the Paleolithic Period more northerly than what has been described so far. Finally, no major demographic changes were detected during the transition between the Bronze and Iron Ages.
Paleolithic to Bronze Age Siberians Reveal Connections with First Americans and across Eurasia
He Yu et al.
Cell, forthcoming
Abstract:
Modern humans have inhabited the Lake Baikal region since the Upper Paleolithic, though the precise history of its peoples over this long time span is still largely unknown. Here, we report genome-wide data from 19 Upper Paleolithic to Early Bronze Age individuals from this Siberian region. An Upper Paleolithic genome shows a direct link with the First Americans by sharing the admixed ancestry that gave rise to all non-Arctic Native Americans. We also demonstrate the formation of Early Neolithic and Bronze Age Baikal populations as the result of prolonged admixture throughout the eighth to sixth millennium BP. Moreover, we detect genetic interactions with western Eurasian steppe populations and reconstruct Yersinia pestis genomes from two Early Bronze Age individuals without western Eurasian ancestry. Overall, our study demonstrates the most deeply divergent connection between Upper Paleolithic Siberians and the First Americans and reveals human and pathogen mobility across Eurasia during the Bronze Age.
The Genomic History of the Bronze Age Southern Levant
Lily Agranat-Tamir et al.
Cell, 28 May 2020, Pages 966-968
Abstract:
We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the “Canaanite” material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different “Canaanite” groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.
Scale and information-processing thresholds in Holocene social evolution
Jaeweon Shin et al.
Nature Communications, May 2020
Abstract:
Throughout the Holocene, societies developed additional layers of administration and more information-rich instruments for managing and recording transactions and events as they grew in population and territory. Yet, while such increases seem inevitable, they are not. Here we use the Seshat database to investigate the development of hundreds of polities, from multiple continents, over thousands of years. We find that sociopolitical development is dominated first by growth in polity scale, then by improvements in information processing and economic systems, and then by further increases in scale. We thus define a Scale Threshold for societies, beyond which growth in information processing becomes paramount, and an Information Threshold, which once crossed facilitates additional growth in scale. Polities diverge in socio-political features below the Information Threshold, but reconverge beyond it. We suggest an explanation for the evolutionary divergence between Old and New World polities based on phased growth in scale and information processing. We also suggest a mechanism to help explain social collapses with no evident external causes.